1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
//
// Test_3x3getRot.cpp
// BulletTest
//
// Copyright (c) 2011 Apple Inc.
//
#include "LinearMath/btScalar.h"
#if defined(BT_USE_SSE_IN_API) || defined(BT_USE_NEON)
#include "Test_3x3getRot.h"
#include "vector.h"
#include "Utils.h"
#include "main.h"
#include <math.h>
#include <string.h>
#include <LinearMath/btMatrix3x3.h>
#define LOOPCOUNT 1000
#define ARRAY_SIZE 128
static inline btSimdFloat4 rand_f4(void)
{
return btAssign128(RANDF_m1p1, RANDF_m1p1, RANDF_m1p1, BT_NAN); // w channel NaN
}
static inline btSimdFloat4 qtNAN_f4(void)
{
return btAssign128(BT_NAN, BT_NAN, BT_NAN, BT_NAN);
}
static void M3x3getRot_ref(const btMatrix3x3 &m, btQuaternion &q)
{
btVector3 m_el[3] = {m[0], m[1], m[2]};
btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
btScalar temp[4];
if (trace > btScalar(0.0))
{
btScalar s = btSqrt(trace + btScalar(1.0));
temp[3] = (s * btScalar(0.5));
s = btScalar(0.5) / s;
temp[0] = ((m_el[2].y() - m_el[1].z()) * s);
temp[1] = ((m_el[0].z() - m_el[2].x()) * s);
temp[2] = ((m_el[1].x() - m_el[0].y()) * s);
}
else
{
int i = m_el[0].x() < m_el[1].y() ? (m_el[1].y() < m_el[2].z() ? 2 : 1) : (m_el[0].x() < m_el[2].z() ? 2 : 0);
int j = (i + 1) % 3;
int k = (i + 2) % 3;
btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0));
temp[i] = s * btScalar(0.5);
s = btScalar(0.5) / s;
temp[3] = (m_el[k][j] - m_el[j][k]) * s;
temp[j] = (m_el[j][i] + m_el[i][j]) * s;
temp[k] = (m_el[k][i] + m_el[i][k]) * s;
}
q.setValue(temp[0], temp[1], temp[2], temp[3]);
}
static int operator!=(const btQuaternion &a, const btQuaternion &b)
{
if (fabs(a.x() - b.x()) +
fabs(a.y() - b.y()) +
fabs(a.z() - b.z()) +
fabs(a.w() - b.w()) >
FLT_EPSILON * 4)
return 1;
return 0;
}
int Test_3x3getRot(void)
{
// Init an array flanked by guard pages
btMatrix3x3 in1[ARRAY_SIZE];
btQuaternion out[ARRAY_SIZE];
btQuaternion out2[ARRAY_SIZE];
// Init the data
size_t i, j;
for (i = 0; i < ARRAY_SIZE; i++)
{
in1[i] = btMatrix3x3(rand_f4(), rand_f4(), rand_f4());
out[i] = btQuaternion(qtNAN_f4());
out2[i] = btQuaternion(qtNAN_f4());
M3x3getRot_ref(in1[i], out[i]);
in1[i].getRotation(out2[i]);
if (out[i] != out2[i])
{
vlog("Error - M3x3getRot result error! ");
vlog("failure @ %ld\n", i);
vlog(
"\ncorrect = (%10.7f, %10.7f, %10.7f, %10.7f) "
"\ntested = (%10.7f, %10.7f, %10.7f, %10.7f) \n",
out[i].x(), out[i].y(), out[i].z(), out[i].w(),
out2[i].x(), out2[i].y(), out2[i].z(), out2[i].w());
return -1;
}
}
uint64_t scalarTime, vectorTime;
uint64_t startTime, bestTime, currentTime;
bestTime = ~(bestTime & 0); //-1ULL;
scalarTime = 0;
for (j = 0; j < LOOPCOUNT; j++)
{
startTime = ReadTicks();
for (i = 0; i < ARRAY_SIZE; i++)
M3x3getRot_ref(in1[i], out[i]);
currentTime = ReadTicks() - startTime;
scalarTime += currentTime;
if (currentTime < bestTime)
bestTime = currentTime;
}
if (0 == gReportAverageTimes)
scalarTime = bestTime;
else
scalarTime /= LOOPCOUNT;
bestTime = ~(bestTime & 0); //-1ULL;
vectorTime = 0;
for (j = 0; j < LOOPCOUNT; j++)
{
startTime = ReadTicks();
for (i = 0; i < ARRAY_SIZE; i++)
{
in1[i].getRotation(out2[i]);
}
currentTime = ReadTicks() - startTime;
vectorTime += currentTime;
if (currentTime < bestTime)
bestTime = currentTime;
}
if (0 == gReportAverageTimes)
vectorTime = bestTime;
else
vectorTime /= LOOPCOUNT;
vlog("Timing:\n");
vlog("\t scalar\t vector\n");
vlog("\t%10.2f\t%10.2f\n", TicksToCycles(scalarTime) / ARRAY_SIZE, TicksToCycles(vectorTime) / ARRAY_SIZE);
return 0;
}
#endif //BT_USE_SSE
|