1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
//
// Test_3x3transposeTimes.cpp
// BulletTest
//
// Copyright (c) 2011 Apple Inc.
//
#include "LinearMath/btScalar.h"
#if defined(BT_USE_SSE_IN_API) || defined(BT_USE_NEON)
#include "Test_3x3transposeTimes.h"
#include "vector.h"
#include "Utils.h"
#include "main.h"
#include <math.h>
#include <string.h>
#include <LinearMath/btMatrix3x3.h>
#define LOOPCOUNT 1000
#define ARRAY_SIZE 128
static inline btSimdFloat4 rand_f4(void)
{
return btAssign128(RANDF_01, RANDF_01, RANDF_01, BT_NAN); // w channel NaN
}
static btMatrix3x3 TransposeTimesReference(const btMatrix3x3 &in, const btMatrix3x3 &m)
{
btVector3 m_el[3] = {in[0], in[1], in[2]};
btSimdFloat4 r0 = btAssign128(m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(),
m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(),
m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(),
0.0f);
btSimdFloat4 r1 = btAssign128(m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(),
m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(),
m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(),
0.0f);
btSimdFloat4 r2 = btAssign128(m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(),
m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(),
m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z(),
0.0f);
return btMatrix3x3(r0, r1, r2);
}
static int operator!=(const btMatrix3x3 &a, const btMatrix3x3 &b)
{
if (a.getRow(0) != b.getRow(0))
return 1;
if (a.getRow(1) != b.getRow(1))
return 1;
if (a.getRow(2) != b.getRow(2))
return 1;
return 0;
}
int Test_3x3transposeTimes(void)
{
// Init an array flanked by guard pages
btMatrix3x3 in1[ARRAY_SIZE];
btMatrix3x3 in2[ARRAY_SIZE];
btMatrix3x3 out[ARRAY_SIZE];
btMatrix3x3 out2[ARRAY_SIZE];
float maxRelativeError = 0.f;
// Init the data
size_t i, j;
for (i = 0; i < ARRAY_SIZE; i++)
{
in1[i] = btMatrix3x3(rand_f4(), rand_f4(), rand_f4());
in2[i] = btMatrix3x3(rand_f4(), rand_f4(), rand_f4());
out[i] = TransposeTimesReference(in1[i], in2[i]);
out2[i] = in1[i].transposeTimes(in2[i]);
if (out[i] != out2[i])
{
float relativeError = 0.f;
for (int column = 0; column < 3; column++)
for (int row = 0; row < 3; row++)
relativeError = btMax(relativeError, btFabs(out2[i][row][column] - out[i][row][column]) / out[i][row][column]);
if (relativeError > 1e-6)
{
vlog("failure @ %ld\n", i);
btVector3 m0, m1, m2;
m0 = out[i].getRow(0);
m1 = out[i].getRow(1);
m2 = out[i].getRow(2);
vlog(
"\ncorrect = (%10.4f, %10.4f, %10.4f, %10.4f) "
"\n (%10.4f, %10.4f, %10.4f, %10.4f) "
"\n (%10.4f, %10.4f, %10.4f, %10.4f) \n",
m0.m_floats[0], m0.m_floats[1], m0.m_floats[2], m0.m_floats[3],
m1.m_floats[0], m1.m_floats[1], m1.m_floats[2], m1.m_floats[3],
m2.m_floats[0], m2.m_floats[1], m2.m_floats[2], m2.m_floats[3]);
m0 = out2[i].getRow(0);
m1 = out2[i].getRow(1);
m2 = out2[i].getRow(2);
vlog(
"\ntested = (%10.4f, %10.4f, %10.4f, %10.4f) "
"\n (%10.4f, %10.4f, %10.4f, %10.4f) "
"\n (%10.4f, %10.4f, %10.4f, %10.4f) \n",
m0.m_floats[0], m0.m_floats[1], m0.m_floats[2], m0.m_floats[3],
m1.m_floats[0], m1.m_floats[1], m1.m_floats[2], m1.m_floats[3],
m2.m_floats[0], m2.m_floats[1], m2.m_floats[2], m2.m_floats[3]);
return -1;
}
else
{
if (relativeError > maxRelativeError)
maxRelativeError = relativeError;
}
}
}
if (maxRelativeError)
{
printf("Warning: maxRelativeError = %e\n", maxRelativeError);
}
uint64_t scalarTime, vectorTime;
uint64_t startTime, bestTime, currentTime;
bestTime = -1LL;
scalarTime = 0;
for (j = 0; j < LOOPCOUNT; j++)
{
startTime = ReadTicks();
for (i = 0; i < ARRAY_SIZE; i++)
out[i] = TransposeTimesReference(in1[i], in2[i]);
currentTime = ReadTicks() - startTime;
scalarTime += currentTime;
if (currentTime < bestTime)
bestTime = currentTime;
}
if (0 == gReportAverageTimes)
scalarTime = bestTime;
else
scalarTime /= LOOPCOUNT;
bestTime = -1LL;
vectorTime = 0;
for (j = 0; j < LOOPCOUNT; j++)
{
startTime = ReadTicks();
for (i = 0; i < ARRAY_SIZE; i++)
out[i] = in1[i].transposeTimes(in2[i]);
currentTime = ReadTicks() - startTime;
vectorTime += currentTime;
if (currentTime < bestTime)
bestTime = currentTime;
}
if (0 == gReportAverageTimes)
vectorTime = bestTime;
else
vectorTime /= LOOPCOUNT;
vlog("Timing:\n");
vlog("\t scalar\t vector\n");
vlog("\t%10.2f\t%10.2f\n", TicksToCycles(scalarTime) / ARRAY_SIZE, TicksToCycles(vectorTime) / ARRAY_SIZE);
return 0;
}
#endif //BT_USE_SSE
|