File: Test_3x3transposeTimes.cpp

package info (click to toggle)
bullet 3.24%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 15,164 kB
  • sloc: cpp: 246,331; lisp: 12,017; ansic: 11,175; python: 630; makefile: 136; sh: 75
file content (169 lines) | stat: -rw-r--r-- 4,869 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
//
//  Test_3x3transposeTimes.cpp
//  BulletTest
//
//  Copyright (c) 2011 Apple Inc.
//

#include "LinearMath/btScalar.h"
#if defined(BT_USE_SSE_IN_API) || defined(BT_USE_NEON)

#include "Test_3x3transposeTimes.h"
#include "vector.h"
#include "Utils.h"
#include "main.h"
#include <math.h>
#include <string.h>

#include <LinearMath/btMatrix3x3.h>

#define LOOPCOUNT 1000
#define ARRAY_SIZE 128

static inline btSimdFloat4 rand_f4(void)
{
	return btAssign128(RANDF_01, RANDF_01, RANDF_01, BT_NAN);  // w channel NaN
}

static btMatrix3x3 TransposeTimesReference(const btMatrix3x3 &in, const btMatrix3x3 &m)
{
	btVector3 m_el[3] = {in[0], in[1], in[2]};
	btSimdFloat4 r0 = btAssign128(m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(),
								  m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(),
								  m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(),
								  0.0f);
	btSimdFloat4 r1 = btAssign128(m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(),
								  m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(),
								  m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(),
								  0.0f);
	btSimdFloat4 r2 = btAssign128(m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(),
								  m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(),
								  m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z(),
								  0.0f);
	return btMatrix3x3(r0, r1, r2);
}

static int operator!=(const btMatrix3x3 &a, const btMatrix3x3 &b)
{
	if (a.getRow(0) != b.getRow(0))
		return 1;
	if (a.getRow(1) != b.getRow(1))
		return 1;
	if (a.getRow(2) != b.getRow(2))
		return 1;
	return 0;
}

int Test_3x3transposeTimes(void)
{
	// Init an array flanked by guard pages
	btMatrix3x3 in1[ARRAY_SIZE];
	btMatrix3x3 in2[ARRAY_SIZE];
	btMatrix3x3 out[ARRAY_SIZE];
	btMatrix3x3 out2[ARRAY_SIZE];

	float maxRelativeError = 0.f;
	// Init the data
	size_t i, j;
	for (i = 0; i < ARRAY_SIZE; i++)
	{
		in1[i] = btMatrix3x3(rand_f4(), rand_f4(), rand_f4());
		in2[i] = btMatrix3x3(rand_f4(), rand_f4(), rand_f4());

		out[i] = TransposeTimesReference(in1[i], in2[i]);
		out2[i] = in1[i].transposeTimes(in2[i]);

		if (out[i] != out2[i])
		{
			float relativeError = 0.f;

			for (int column = 0; column < 3; column++)
				for (int row = 0; row < 3; row++)
					relativeError = btMax(relativeError, btFabs(out2[i][row][column] - out[i][row][column]) / out[i][row][column]);

			if (relativeError > 1e-6)
			{
				vlog("failure @ %ld\n", i);
				btVector3 m0, m1, m2;
				m0 = out[i].getRow(0);
				m1 = out[i].getRow(1);
				m2 = out[i].getRow(2);

				vlog(
					"\ncorrect = (%10.4f, %10.4f, %10.4f, %10.4f) "
					"\n          (%10.4f, %10.4f, %10.4f, %10.4f) "
					"\n          (%10.4f, %10.4f, %10.4f, %10.4f) \n",
					m0.m_floats[0], m0.m_floats[1], m0.m_floats[2], m0.m_floats[3],
					m1.m_floats[0], m1.m_floats[1], m1.m_floats[2], m1.m_floats[3],
					m2.m_floats[0], m2.m_floats[1], m2.m_floats[2], m2.m_floats[3]);

				m0 = out2[i].getRow(0);
				m1 = out2[i].getRow(1);
				m2 = out2[i].getRow(2);

				vlog(
					"\ntested  = (%10.4f, %10.4f, %10.4f, %10.4f) "
					"\n          (%10.4f, %10.4f, %10.4f, %10.4f) "
					"\n          (%10.4f, %10.4f, %10.4f, %10.4f) \n",
					m0.m_floats[0], m0.m_floats[1], m0.m_floats[2], m0.m_floats[3],
					m1.m_floats[0], m1.m_floats[1], m1.m_floats[2], m1.m_floats[3],
					m2.m_floats[0], m2.m_floats[1], m2.m_floats[2], m2.m_floats[3]);

				return -1;
			}
			else
			{
				if (relativeError > maxRelativeError)
					maxRelativeError = relativeError;
			}
		}
	}

	if (maxRelativeError)
	{
		printf("Warning: maxRelativeError = %e\n", maxRelativeError);
	}
	uint64_t scalarTime, vectorTime;
	uint64_t startTime, bestTime, currentTime;
	bestTime = -1LL;
	scalarTime = 0;
	for (j = 0; j < LOOPCOUNT; j++)
	{
		startTime = ReadTicks();
		for (i = 0; i < ARRAY_SIZE; i++)
			out[i] = TransposeTimesReference(in1[i], in2[i]);
		currentTime = ReadTicks() - startTime;
		scalarTime += currentTime;
		if (currentTime < bestTime)
			bestTime = currentTime;
	}
	if (0 == gReportAverageTimes)
		scalarTime = bestTime;
	else
		scalarTime /= LOOPCOUNT;

	bestTime = -1LL;
	vectorTime = 0;
	for (j = 0; j < LOOPCOUNT; j++)
	{
		startTime = ReadTicks();
		for (i = 0; i < ARRAY_SIZE; i++)
			out[i] = in1[i].transposeTimes(in2[i]);
		currentTime = ReadTicks() - startTime;
		vectorTime += currentTime;
		if (currentTime < bestTime)
			bestTime = currentTime;
	}
	if (0 == gReportAverageTimes)
		vectorTime = bestTime;
	else
		vectorTime /= LOOPCOUNT;

	vlog("Timing:\n");
	vlog("\t    scalar\t    vector\n");
	vlog("\t%10.2f\t%10.2f\n", TicksToCycles(scalarTime) / ARRAY_SIZE, TicksToCycles(vectorTime) / ARRAY_SIZE);

	return 0;
}

#endif  //BT_USE_SSE