1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
//
// Test_qtmulQV3.cpp
// BulletTest
//
// Copyright (c) 2011 Apple Inc.
//
#include "LinearMath/btScalar.h"
#if defined(BT_USE_SSE_IN_API) || defined(BT_USE_NEON)
#include "Test_qtmulQV3.h"
#include "vector.h"
#include "Utils.h"
#include "main.h"
#include <math.h>
#include <string.h>
#include <LinearMath/btQuaternion.h>
#define BT_OP(a, b) ((a) * (b))
// reference code for testing purposes
static inline btQuaternion qtmulQV3_ref(const btQuaternion& q, const btVector3& w);
static inline btQuaternion qtmulQV3_ref(const btQuaternion& q, const btVector3& w)
{
return btQuaternion(
q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
-q.x() * w.x() - q.y() * w.y() - q.z() * w.z());
}
#define LOOPCOUNT 1024
#define NUM_CYCLES 1000
static inline btSimdFloat4 rand_f4(void)
{
return btAssign128(RANDF_m1p1, RANDF_m1p1, RANDF_m1p1, BT_NAN); // w channel NaN
}
static inline btSimdFloat4 qtrand_f4(void)
{
return btAssign128(RANDF_m1p1, RANDF_m1p1, RANDF_m1p1, RANDF_m1p1);
}
static inline btSimdFloat4 qtNAN_f4(void)
{
return btAssign128(BT_NAN, BT_NAN, BT_NAN, BT_NAN);
}
int Test_qtmulQV3(void)
{
btQuaternion q;
btVector3 v3;
// Init the data
q = btQuaternion(qtrand_f4());
v3 = btVector3(rand_f4());
btQuaternion correct_res, test_res;
correct_res = btQuaternion(qtNAN_f4());
test_res = btQuaternion(qtNAN_f4());
{
correct_res = qtmulQV3_ref(q, v3);
test_res = BT_OP(q, v3);
if (fabsf(correct_res.x() - test_res.x()) +
fabsf(correct_res.y() - test_res.y()) +
fabsf(correct_res.z() - test_res.z()) +
fabsf(correct_res.w() - test_res.w()) >
FLT_EPSILON * 8)
{
vlog(
"Error - qtmulQV3 result error! "
"\ncorrect = (%10.4f, %10.4f, %10.4f, %10.4f) "
"\ntested = (%10.4f, %10.4f, %10.4f, %10.4f) \n",
correct_res.x(), correct_res.y(),
correct_res.z(), correct_res.w(),
test_res.x(), test_res.y(),
test_res.z(), test_res.w());
return 1;
}
}
#define DATA_SIZE LOOPCOUNT
btQuaternion qt_arrR[DATA_SIZE];
btQuaternion qt_arr[DATA_SIZE];
btVector3 v3_arr[DATA_SIZE];
uint64_t scalarTime;
uint64_t vectorTime;
size_t j, k;
{
uint64_t startTime, bestTime, currentTime;
bestTime = -1LL;
scalarTime = 0;
for (j = 0; j < NUM_CYCLES; j++)
{
for (k = 0; k < DATA_SIZE; k++)
{
qt_arr[k] = btQuaternion(qtrand_f4());
v3_arr[k] = btVector3(rand_f4());
}
startTime = ReadTicks();
for (k = 0; k < LOOPCOUNT; k++)
{
qt_arrR[k] = qtmulQV3_ref(qt_arr[k], v3_arr[k]);
}
currentTime = ReadTicks() - startTime;
scalarTime += currentTime;
if (currentTime < bestTime)
bestTime = currentTime;
}
if (0 == gReportAverageTimes)
scalarTime = bestTime;
else
scalarTime /= NUM_CYCLES;
}
{
uint64_t startTime, bestTime, currentTime;
bestTime = -1LL;
vectorTime = 0;
for (j = 0; j < NUM_CYCLES; j++)
{
for (k = 0; k < DATA_SIZE; k++)
{
qt_arr[k] = btQuaternion(qtrand_f4());
v3_arr[k] = btVector3(rand_f4());
}
startTime = ReadTicks();
for (k = 0; k < LOOPCOUNT; k++)
{
qt_arrR[k] = BT_OP(qt_arr[k], v3_arr[k]);
}
currentTime = ReadTicks() - startTime;
vectorTime += currentTime;
if (currentTime < bestTime)
bestTime = currentTime;
}
if (0 == gReportAverageTimes)
vectorTime = bestTime;
else
vectorTime /= NUM_CYCLES;
}
vlog("Timing:\n");
vlog(" \t scalar\t vector\n");
vlog(" \t%10.4f\t%10.4f\n", TicksToCycles(scalarTime) / LOOPCOUNT,
TicksToCycles(vectorTime) / LOOPCOUNT);
return 0;
}
#endif //BT_USE_SSE
|