File: Test_qtmulQV3.cpp

package info (click to toggle)
bullet 3.24%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 15,164 kB
  • sloc: cpp: 246,331; lisp: 12,017; ansic: 11,175; python: 630; makefile: 136; sh: 75
file content (162 lines) | stat: -rw-r--r-- 3,643 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
//
//  Test_qtmulQV3.cpp
//  BulletTest
//
//  Copyright (c) 2011 Apple Inc.
//

#include "LinearMath/btScalar.h"
#if defined(BT_USE_SSE_IN_API) || defined(BT_USE_NEON)

#include "Test_qtmulQV3.h"
#include "vector.h"
#include "Utils.h"
#include "main.h"
#include <math.h>
#include <string.h>

#include <LinearMath/btQuaternion.h>

#define BT_OP(a, b) ((a) * (b))
// reference code for testing purposes
static inline btQuaternion qtmulQV3_ref(const btQuaternion& q, const btVector3& w);

static inline btQuaternion qtmulQV3_ref(const btQuaternion& q, const btVector3& w)
{
	return btQuaternion(
		q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
		q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
		q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
		-q.x() * w.x() - q.y() * w.y() - q.z() * w.z());
}

#define LOOPCOUNT 1024
#define NUM_CYCLES 1000

static inline btSimdFloat4 rand_f4(void)
{
	return btAssign128(RANDF_m1p1, RANDF_m1p1, RANDF_m1p1, BT_NAN);  // w channel NaN
}

static inline btSimdFloat4 qtrand_f4(void)
{
	return btAssign128(RANDF_m1p1, RANDF_m1p1, RANDF_m1p1, RANDF_m1p1);
}

static inline btSimdFloat4 qtNAN_f4(void)
{
	return btAssign128(BT_NAN, BT_NAN, BT_NAN, BT_NAN);
}

int Test_qtmulQV3(void)
{
	btQuaternion q;
	btVector3 v3;

	// Init the data
	q = btQuaternion(qtrand_f4());
	v3 = btVector3(rand_f4());

	btQuaternion correct_res, test_res;
	correct_res = btQuaternion(qtNAN_f4());
	test_res = btQuaternion(qtNAN_f4());

	{
		correct_res = qtmulQV3_ref(q, v3);
		test_res = BT_OP(q, v3);

		if (fabsf(correct_res.x() - test_res.x()) +
				fabsf(correct_res.y() - test_res.y()) +
				fabsf(correct_res.z() - test_res.z()) +
				fabsf(correct_res.w() - test_res.w()) >
			FLT_EPSILON * 8)
		{
			vlog(
				"Error - qtmulQV3 result error! "
				"\ncorrect = (%10.4f, %10.4f, %10.4f, %10.4f) "
				"\ntested  = (%10.4f, %10.4f, %10.4f, %10.4f) \n",
				correct_res.x(), correct_res.y(),
				correct_res.z(), correct_res.w(),
				test_res.x(), test_res.y(),
				test_res.z(), test_res.w());

			return 1;
		}
	}

#define DATA_SIZE LOOPCOUNT

	btQuaternion qt_arrR[DATA_SIZE];
	btQuaternion qt_arr[DATA_SIZE];
	btVector3 v3_arr[DATA_SIZE];

	uint64_t scalarTime;
	uint64_t vectorTime;
	size_t j, k;

	{
		uint64_t startTime, bestTime, currentTime;

		bestTime = -1LL;
		scalarTime = 0;
		for (j = 0; j < NUM_CYCLES; j++)
		{
			for (k = 0; k < DATA_SIZE; k++)
			{
				qt_arr[k] = btQuaternion(qtrand_f4());
				v3_arr[k] = btVector3(rand_f4());
			}

			startTime = ReadTicks();
			for (k = 0; k < LOOPCOUNT; k++)
			{
				qt_arrR[k] = qtmulQV3_ref(qt_arr[k], v3_arr[k]);
			}
			currentTime = ReadTicks() - startTime;
			scalarTime += currentTime;
			if (currentTime < bestTime)
				bestTime = currentTime;
		}
		if (0 == gReportAverageTimes)
			scalarTime = bestTime;
		else
			scalarTime /= NUM_CYCLES;
	}

	{
		uint64_t startTime, bestTime, currentTime;

		bestTime = -1LL;
		vectorTime = 0;
		for (j = 0; j < NUM_CYCLES; j++)
		{
			for (k = 0; k < DATA_SIZE; k++)
			{
				qt_arr[k] = btQuaternion(qtrand_f4());
				v3_arr[k] = btVector3(rand_f4());
			}

			startTime = ReadTicks();
			for (k = 0; k < LOOPCOUNT; k++)
			{
				qt_arrR[k] = BT_OP(qt_arr[k], v3_arr[k]);
			}
			currentTime = ReadTicks() - startTime;
			vectorTime += currentTime;
			if (currentTime < bestTime)
				bestTime = currentTime;
		}
		if (0 == gReportAverageTimes)
			vectorTime = bestTime;
		else
			vectorTime /= NUM_CYCLES;
	}

	vlog("Timing:\n");
	vlog("     \t    scalar\t    vector\n");
	vlog("    \t%10.4f\t%10.4f\n", TicksToCycles(scalarTime) / LOOPCOUNT,
		 TicksToCycles(vectorTime) / LOOPCOUNT);

	return 0;
}
#endif  //BT_USE_SSE