1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
#include <gtest/gtest.h>
#include "Bullet3Common/b3Logging.h"
#include "Bullet3Common/b3CommandLineArgs.h"
#include "Bullet3OpenCL/Initialize/b3OpenCLUtils.h"
#include "Bullet3OpenCL/RigidBody/kernels/solverUtils.h"
extern int gArgc;
extern char** gArgv;
namespace
{
struct CompileBullet3JacobiContactSolverKernels : public ::testing::Test
{
cl_context m_clContext;
cl_device_id m_clDevice;
cl_command_queue m_clQueue;
char* m_clDeviceName;
cl_platform_id m_platformId;
CompileBullet3JacobiContactSolverKernels()
: m_clDeviceName(0),
m_clContext(0),
m_clDevice(0),
m_clQueue(0),
m_platformId(0)
{
// You can do set-up work for each test here.
b3CommandLineArgs args(gArgc, gArgv);
int preferredDeviceIndex = -1;
int preferredPlatformIndex = -1;
bool allowCpuOpenCL = false;
initCL();
}
virtual ~CompileBullet3JacobiContactSolverKernels()
{
// You can do clean-up work that doesn't throw exceptions here.
exitCL();
}
// If the constructor and destructor are not enough for setting up
// and cleaning up each test, you can define the following methods:
#include "initCL.h"
virtual void SetUp()
{
// Code here will be called immediately after the constructor (right
// before each test).
}
virtual void TearDown()
{
// Code here will be called immediately after each test (right
// before the destructor).
}
};
TEST_F(CompileBullet3JacobiContactSolverKernels, jacobiContactKernels)
{
cl_int errNum = 0;
const char* additionalMacros = "";
cl_program solverUtilsProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext, m_clDevice, solverUtilsCL, &errNum, additionalMacros, 0, true);
ASSERT_EQ(CL_SUCCESS, errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverUtilsCL, "CountBodiesKernel", &errNum, solverUtilsProg, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverUtilsCL, "ContactToConstraintSplitKernel", &errNum, solverUtilsProg, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverUtilsCL, "ClearVelocitiesKernel", &errNum, solverUtilsProg, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverUtilsCL, "AverageVelocitiesKernel", &errNum, solverUtilsProg, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverUtilsCL, "UpdateBodyVelocitiesKernel", &errNum, solverUtilsProg, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverUtilsCL, "SolveContactJacobiKernel", &errNum, solverUtilsProg, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverUtilsCL, "SolveFrictionJacobiKernel", &errNum, solverUtilsProg, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
clReleaseProgram(solverUtilsProg);
}
}; // namespace
|