1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
#include <gtest/gtest.h>
#include "Bullet3Common/b3Logging.h"
#include "Bullet3Common/b3CommandLineArgs.h"
#include "Bullet3OpenCL/Initialize/b3OpenCLUtils.h"
#include "Bullet3OpenCL/NarrowphaseCollision/kernels/satKernels.h"
#include "Bullet3OpenCL/NarrowphaseCollision/kernels/mprKernels.h"
#include "Bullet3OpenCL/NarrowphaseCollision/kernels/satConcaveKernels.h"
#include "Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.h"
#include "Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.h"
#include "Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.h"
extern int gArgc;
extern char** gArgv;
namespace
{
struct CompileBullet3NarrowphaseKernels : public ::testing::Test
{
cl_context m_clContext;
cl_device_id m_clDevice;
cl_command_queue m_clQueue;
char* m_clDeviceName;
cl_platform_id m_platformId;
CompileBullet3NarrowphaseKernels()
: m_clDeviceName(0),
m_clContext(0),
m_clDevice(0),
m_clQueue(0),
m_platformId(0)
{
// You can do set-up work for each test here.
b3CommandLineArgs args(gArgc, gArgv);
int preferredDeviceIndex = -1;
int preferredPlatformIndex = -1;
bool allowCpuOpenCL = false;
initCL();
}
virtual ~CompileBullet3NarrowphaseKernels()
{
// You can do clean-up work that doesn't throw exceptions here.
exitCL();
}
// If the constructor and destructor are not enough for setting up
// and cleaning up each test, you can define the following methods:
#include "initCL.h"
virtual void SetUp()
{
// Code here will be called immediately after the constructor (right
// before each test).
}
virtual void TearDown()
{
// Code here will be called immediately after each test (right
// before the destructor).
}
};
TEST_F(CompileBullet3NarrowphaseKernels, satKernelsCL)
{
cl_int errNum = 0;
char flags[1024] = {0};
cl_program satProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext, m_clDevice, satKernelsCL, &errNum, flags, 0, true);
ASSERT_EQ(CL_SUCCESS, errNum);
{
cl_kernel m_findSeparatingAxisKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, satKernelsCL, "findSeparatingAxisKernel", &errNum, satProg);
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(m_findSeparatingAxisKernel);
}
{
cl_kernel m_findSeparatingAxisVertexFaceKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, satKernelsCL, "findSeparatingAxisVertexFaceKernel", &errNum, satProg);
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(m_findSeparatingAxisVertexFaceKernel);
}
{
cl_kernel m_findSeparatingAxisEdgeEdgeKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, satKernelsCL, "findSeparatingAxisEdgeEdgeKernel", &errNum, satProg);
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(m_findSeparatingAxisEdgeEdgeKernel);
}
{
cl_kernel m_findConcaveSeparatingAxisKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, satKernelsCL, "findConcaveSeparatingAxisKernel", &errNum, satProg);
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(m_findConcaveSeparatingAxisKernel);
}
{
cl_kernel m_findCompoundPairsKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, satKernelsCL, "findCompoundPairsKernel", &errNum, satProg);
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(m_findCompoundPairsKernel);
}
{
cl_kernel m_processCompoundPairsKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, satKernelsCL, "processCompoundPairsKernel", &errNum, satProg);
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(m_processCompoundPairsKernel);
}
clReleaseProgram(satProg);
}
TEST_F(CompileBullet3NarrowphaseKernels, satConcaveKernelsCL)
{
cl_int errNum = 0;
char flags[1024] = {0};
cl_program satConcaveProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext, m_clDevice, satConcaveKernelsCL, &errNum, flags, 0, true);
ASSERT_EQ(CL_SUCCESS, errNum);
{
cl_kernel m_findConcaveSeparatingAxisVertexFaceKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, satConcaveKernelsCL, "findConcaveSeparatingAxisVertexFaceKernel", &errNum, satConcaveProg);
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(m_findConcaveSeparatingAxisVertexFaceKernel);
}
{
cl_kernel m_findConcaveSeparatingAxisEdgeEdgeKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, satConcaveKernelsCL, "findConcaveSeparatingAxisEdgeEdgeKernel", &errNum, satConcaveProg);
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(m_findConcaveSeparatingAxisEdgeEdgeKernel);
}
clReleaseProgram(satConcaveProg);
}
TEST_F(CompileBullet3NarrowphaseKernels, satClipKernelsCL)
{
char flags[1024] = {0};
cl_int errNum = 0;
//#ifdef CL_PLATFORM_INTEL
// sprintf(flags,"-g -s \"%s\"","C:/develop/bullet3_experiments2/opencl/gpu_narrowphase/kernels/satClipHullContacts.cl");
//#endif
cl_program satClipContactsProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext, m_clDevice, satClipKernelsCL, &errNum, flags, 0, true);
ASSERT_EQ(CL_SUCCESS, errNum);
{
cl_kernel m_clipHullHullKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, satClipKernelsCL, "clipHullHullKernel", &errNum, satClipContactsProg);
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(m_clipHullHullKernel);
}
{
cl_kernel m_clipCompoundsHullHullKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, satClipKernelsCL, "clipCompoundsHullHullKernel", &errNum, satClipContactsProg);
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(m_clipCompoundsHullHullKernel);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, satClipKernelsCL, "findClippingFacesKernel", &errNum, satClipContactsProg);
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, satClipKernelsCL, "clipFacesAndFindContactsKernel", &errNum, satClipContactsProg);
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, satClipKernelsCL, "clipHullHullConcaveConvexKernel", &errNum, satClipContactsProg);
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, satClipKernelsCL,
"newContactReductionKernel", &errNum, satClipContactsProg);
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(k);
}
clReleaseProgram(satClipContactsProg);
}
TEST_F(CompileBullet3NarrowphaseKernels, bvhTraversalKernels)
{
cl_int errNum = 0;
cl_program bvhTraversalProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext, m_clDevice, bvhTraversalKernelCL, &errNum, "", 0, true);
ASSERT_EQ(CL_SUCCESS, errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, bvhTraversalKernelCL, "bvhTraversalKernel", &errNum, bvhTraversalProg, "");
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(k);
}
clReleaseProgram(bvhTraversalProg);
}
TEST_F(CompileBullet3NarrowphaseKernels, primitiveContactsKernelsCL)
{
cl_int errNum = 0;
cl_program primitiveContactsProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext, m_clDevice, primitiveContactsKernelsCL, &errNum, "", 0, true);
ASSERT_EQ(CL_SUCCESS, errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, primitiveContactsKernelsCL, "primitiveContactsKernel", &errNum, primitiveContactsProg, "");
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, primitiveContactsKernelsCL, "findConcaveSphereContactsKernel", &errNum, primitiveContactsProg);
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, primitiveContactsKernelsCL, "processCompoundPairsPrimitivesKernel", &errNum, primitiveContactsProg, "");
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(k);
}
clReleaseProgram(primitiveContactsProg);
}
TEST_F(CompileBullet3NarrowphaseKernels, mprKernelsCL)
{
cl_int errNum = 0;
const char* srcConcave = satConcaveKernelsCL;
char flags[1024] = {0};
cl_program mprProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext, m_clDevice, mprKernelsCL, &errNum, flags, 0, true);
ASSERT_EQ(CL_SUCCESS, errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, mprKernelsCL, "mprPenetrationKernel", &errNum, mprProg);
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, mprKernelsCL, "findSeparatingAxisUnitSphereKernel", &errNum, mprProg);
ASSERT_EQ(CL_SUCCESS, errNum);
clReleaseKernel(k);
}
clReleaseProgram(mprProg);
}
}; // namespace
|