1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2014 Google Inc. http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///Original author: Erwin Coumans, October 2014
///Initial version of this low-level GJK/EPA/MPR convex-convex collision test
///You can provide your own support function in combination with the template functions
///See btComputeGjkEpaSphereSphereCollision below for an example
///Todo: the test needs proper coverage and using a convex hull point cloud
///Also the GJK, EPA and MPR should be improved, both quality and performance
#include <vector>
#include <gtest/gtest.h>
#include "SphereSphereCollision.h"
#include "BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionShapes/btMultiSphereShape.h"
#include "BulletCollision/NarrowPhaseCollision/btComputeGjkEpaPenetration.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpa3.h"
#include "BulletCollision/NarrowPhaseCollision/btMprPenetration.h"
namespace {
btVector3 MyBulletShapeSupportFunc(const void* shapeAptr, const btVector3& dir, bool includeMargin)
{
btConvexShape* shape = (btConvexShape*)shapeAptr;
if (includeMargin)
{
return shape->localGetSupportingVertex(dir);
}
return shape->localGetSupportingVertexWithoutMargin(dir);
}
btVector3 MyBulletShapeCenterFunc(const void* shapeAptr)
{
return btVector3(0, 0, 0);
}
enum SphereSphereTestMethod
{
SSTM_ANALYTIC,
SSTM_GJKEPA,
SSTM_GJKEPA_RADIUS_NOT_FULL_MARGIN,
SSTM_GJKMPR
};
struct ConvexWrap
{
btConvexShape* m_convex;
btTransform m_worldTrans;
inline btScalar getMargin() const
{
return m_convex->getMargin();
}
inline btVector3 getObjectCenterInWorld() const
{
return m_worldTrans.getOrigin();
}
inline const btTransform& getWorldTransform() const
{
return m_worldTrans;
}
inline btVector3 getLocalSupportWithMargin(const btVector3& dir) const
{
return m_convex->localGetSupportingVertex(dir);
}
inline btVector3 getLocalSupportWithoutMargin(const btVector3& dir) const
{
return m_convex->localGetSupportingVertexWithoutMargin(dir);
}
};
inline int btComputeGjkEpaSphereSphereCollision(const btSphereSphereCollisionDescription& input, btDistanceInfo* distInfo, SphereSphereTestMethod method)
{
///for spheres it is best to use a 'point' and set the margin to the radius (which is what btSphereShape does)
btSphereShape singleSphereA(input.m_radiusA);
btSphereShape singleSphereB(input.m_radiusB);
btVector3 org(0, 0, 0);
btScalar radA = input.m_radiusA;
btScalar radB = input.m_radiusB;
ConvexWrap a, b;
a.m_worldTrans = input.m_sphereTransformA;
b.m_worldTrans = input.m_sphereTransformB;
;
btMultiSphereShape multiSphereA(&org, &radA, 1);
btMultiSphereShape multiSphereB(&org, &radB, 1);
btGjkCollisionDescription colDesc;
switch (method)
{
case SSTM_GJKEPA_RADIUS_NOT_FULL_MARGIN:
{
a.m_convex = &multiSphereA;
b.m_convex = &multiSphereB;
break;
}
default:
{
a.m_convex = &singleSphereA;
b.m_convex = &singleSphereB;
}
};
btVoronoiSimplexSolver simplexSolver;
simplexSolver.reset();
int res = -1;
///todo(erwincoumans): improve convex-convex quality and performance
///also compare with https://code.google.com/p/bullet/source/browse/branches/PhysicsEffects/src/base_level/collision/pfx_gjk_solver.cpp
switch (method)
{
case SSTM_GJKEPA_RADIUS_NOT_FULL_MARGIN:
case SSTM_GJKEPA:
{
res = btComputeGjkEpaPenetration(a, b, colDesc, simplexSolver, distInfo);
break;
}
case SSTM_GJKMPR:
{
res = btComputeGjkDistance(a, b, colDesc, distInfo);
if (res == 0)
{
// printf("use GJK results in distance %f\n",distInfo->m_distance);
return res;
}
else
{
btMprCollisionDescription mprDesc;
res = btComputeMprPenetration(a, b, mprDesc, distInfo);
// if (res==0)
// {
// printf("use MPR results in distance %f\n",distInfo->m_distance);
// }
}
break;
}
default:
{
btAssert(0);
}
}
return res;
}
void testSphereSphereDistance(SphereSphereTestMethod method, btScalar abs_error)
{
{
btSphereSphereCollisionDescription ssd;
ssd.m_sphereTransformA.setIdentity();
ssd.m_sphereTransformB.setIdentity();
ssd.m_radiusA = 0.f;
ssd.m_radiusB = 0.f;
btDistanceInfo distInfo;
int result = btComputeSphereSphereCollision(ssd, &distInfo);
ASSERT_EQ(0, result);
ASSERT_EQ(btScalar(0), distInfo.m_distance);
}
for (int rb = 1; rb < 5; rb++)
for (int z = -5; z < 5; z++)
{
for (int j = 1; j < 5; j++)
{
for (int i = -5; i < 5; i++)
{
if (i != z) //skip co-centric spheres for now (todo(erwincoumans) fix this)
{
btSphereSphereCollisionDescription ssd;
ssd.m_sphereTransformA.setIdentity();
ssd.m_sphereTransformA.setOrigin(btVector3(0, btScalar(i), 0));
ssd.m_sphereTransformB.setIdentity();
ssd.m_sphereTransformB.setOrigin(btVector3(0, btScalar(z), 0));
ssd.m_radiusA = btScalar(j);
ssd.m_radiusB = btScalar(rb) * btScalar(0.1);
btDistanceInfo distInfo;
int result = -1;
switch (method)
{
case SSTM_ANALYTIC:
{
result = btComputeSphereSphereCollision(ssd, &distInfo);
break;
}
case SSTM_GJKMPR:
case SSTM_GJKEPA:
case SSTM_GJKEPA_RADIUS_NOT_FULL_MARGIN:
{
result = btComputeGjkEpaSphereSphereCollision(ssd, &distInfo, method);
break;
}
default:
{
ASSERT_EQ(0, 1);
btAssert(0);
break;
}
}
// int result = btComputeSphereSphereCollision(ssd,&distInfo);
#if 0
printf("sphereA(pos=[%f,%f,%f],r=%f)-sphereB(pos=[%f,%f,%f],r=%f) Dist=%f,normalOnB[%f,%f,%f],pA=[%f,%f,%f],pB[%f,%f,%f]\n",
ssd.m_sphereTransformA.getOrigin()[0],ssd.m_sphereTransformA.getOrigin()[1],ssd.m_sphereTransformA.getOrigin()[2],ssd.m_radiusA,
ssd.m_sphereTransformB.getOrigin()[0],ssd.m_sphereTransformB.getOrigin()[1],ssd.m_sphereTransformB.getOrigin()[2],ssd.m_radiusB,
distInfo.m_distance,distInfo.m_normalBtoA[0],distInfo.m_normalBtoA[1],distInfo.m_normalBtoA[2],
distInfo.m_pointOnA[0],distInfo.m_pointOnA[1],distInfo.m_pointOnA[2],
distInfo.m_pointOnB[0],distInfo.m_pointOnB[1],distInfo.m_pointOnB[2]);
#endif
ASSERT_EQ(0, result);
ASSERT_NEAR(btFabs(btScalar(i - z)) - btScalar(j) - ssd.m_radiusB, distInfo.m_distance, abs_error);
btVector3 computedA = distInfo.m_pointOnB + distInfo.m_distance * distInfo.m_normalBtoA;
ASSERT_NEAR(computedA.x(), distInfo.m_pointOnA.x(), abs_error);
ASSERT_NEAR(computedA.y(), distInfo.m_pointOnA.y(), abs_error);
ASSERT_NEAR(computedA.z(), distInfo.m_pointOnA.z(), abs_error);
}
}
}
}
}
TEST(BulletCollisionTest, GjkMPRSphereSphereDistance)
{
testSphereSphereDistance(SSTM_GJKMPR, 0.0001);
}
TEST(BulletCollisionTest, GjkEpaSphereSphereDistance)
{
testSphereSphereDistance(SSTM_GJKEPA, 0.00001);
}
TEST(BulletCollisionTest, GjkEpaSphereSphereRadiusNotFullMarginDistance)
{
testSphereSphereDistance(SSTM_GJKEPA_RADIUS_NOT_FULL_MARGIN, 0.1);
}
TEST(BulletCollisionTest, AnalyticSphereSphereDistance)
{
testSphereSphereDistance(SSTM_ANALYTIC, 0.00001);
}
class TriangleCollector : public btTriangleCallback
{
public:
std::vector<btVector3> *triangles;
explicit TriangleCollector(std::vector<btVector3>* triangles) : triangles(triangles) {}
virtual ~TriangleCollector() {}
virtual void processTriangle(btVector3* triangle, int partId, int triangleIndex)
{
triangles->push_back(*triangle);
}
};
TEST(BulletCollisionTest, Heightfield_ProcessAllTriangles_FiltersByUpAxis)
{
// A flat 2x2 heightfield.
const btScalar heightFieldData[] = {
10.0, 10.0,
10.0, 10.0,
};
btHeightfieldTerrainShape shape(
/*heightStickWidth=*/2, /*heightStickLength=*/2,
&heightFieldData[0], /*heightScale=*/1,
/*minHeight=*/-10.0, /*maxHeight=*/10.0,
/*upAxis=*/2, PHY_FLOAT, /*flipQuadEdges=*/false);
std::vector<btVector3> triangles;
TriangleCollector collector(&triangles);
// AABB overlaps with the heightfield on upAxis.
shape.processAllTriangles(&collector, btVector3(0, 0, 0), btVector3(20, 20, 20));
EXPECT_EQ(triangles.size(), 2);
// AABB does not overlap with the heightfield on upAxis.
triangles.clear();
shape.processAllTriangles(&collector, btVector3(0, 0, 0), btVector3(20, 20, 5));
EXPECT_EQ(triangles.size(), 0);
}
} // namespace
int main(int argc, char** argv)
{
#if _MSC_VER
_CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);
//void *testWhetherMemoryLeakDetectionWorks = malloc(1);
#endif
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
|