1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
|
/* `time' utility to display resource usage of processes.
Copyright (C) 1990, 91, 92, 93, 96 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* Originally written by David Keppel <pardo@cs.washington.edu>.
Heavily modified by David MacKenzie <djm@gnu.ai.mit.edu>.
Heavily modified for busybox by Erik Andersen <andersen@codepoet.org>
*/
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <errno.h>
#include <getopt.h>
#include <string.h>
#include <limits.h>
#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h> /* For pid_t. */
#include <sys/wait.h>
#include <sys/param.h> /* For getpagesize, maybe. */
#define TV_MSEC tv_usec / 1000
#include <sys/resource.h>
#include "busybox.h"
/* Information on the resources used by a child process. */
typedef struct
{
int waitstatus;
struct rusage ru;
struct timeval start, elapsed; /* Wallclock time of process. */
} resource_t;
/* msec = milliseconds = 1/1,000 (1*10e-3) second.
usec = microseconds = 1/1,000,000 (1*10e-6) second. */
#ifndef TICKS_PER_SEC
#define TICKS_PER_SEC 100
#endif
/* The number of milliseconds in one `tick' used by the `rusage' structure. */
#define MSEC_PER_TICK (1000 / TICKS_PER_SEC)
/* Return the number of clock ticks that occur in M milliseconds. */
#define MSEC_TO_TICKS(m) ((m) / MSEC_PER_TICK)
#define UL unsigned long
static const char *const default_format = "real\t%E\nuser\t%u\nsys\t%T";
/* The output format for the -p option .*/
static const char *const posix_format = "real %e\nuser %U\nsys %S";
/* Format string for printing all statistics verbosely.
Keep this output to 24 lines so users on terminals can see it all.*/
static const char *const long_format =
"\tCommand being timed: \"%C\"\n"
"\tUser time (seconds): %U\n"
"\tSystem time (seconds): %S\n"
"\tPercent of CPU this job got: %P\n"
"\tElapsed (wall clock) time (h:mm:ss or m:ss): %E\n"
"\tAverage shared text size (kbytes): %X\n"
"\tAverage unshared data size (kbytes): %D\n"
"\tAverage stack size (kbytes): %p\n"
"\tAverage total size (kbytes): %K\n"
"\tMaximum resident set size (kbytes): %M\n"
"\tAverage resident set size (kbytes): %t\n"
"\tMajor (requiring I/O) page faults: %F\n"
"\tMinor (reclaiming a frame) page faults: %R\n"
"\tVoluntary context switches: %w\n"
"\tInvoluntary context switches: %c\n"
"\tSwaps: %W\n"
"\tFile system inputs: %I\n"
"\tFile system outputs: %O\n"
"\tSocket messages sent: %s\n"
"\tSocket messages received: %r\n"
"\tSignals delivered: %k\n"
"\tPage size (bytes): %Z\n"
"\tExit status: %x";
/* Wait for and fill in data on child process PID.
Return 0 on error, 1 if ok. */
/* pid_t is short on BSDI, so don't try to promote it. */
static int resuse_end (pid_t pid, resource_t *resp)
{
int status;
pid_t caught;
/* Ignore signals, but don't ignore the children. When wait3
returns the child process, set the time the command finished. */
while ((caught = wait3 (&status, 0, &resp->ru)) != pid)
{
if (caught == -1)
return 0;
}
gettimeofday (&resp->elapsed, (struct timezone *) 0);
resp->elapsed.tv_sec -= resp->start.tv_sec;
if (resp->elapsed.tv_usec < resp->start.tv_usec)
{
/* Manually carry a one from the seconds field. */
resp->elapsed.tv_usec += 1000000;
--resp->elapsed.tv_sec;
}
resp->elapsed.tv_usec -= resp->start.tv_usec;
resp->waitstatus = status;
return 1;
}
/* Print ARGV to FP, with each entry in ARGV separated by FILLER. */
static void fprintargv (FILE *fp, char *const *argv, const char *filler)
{
char *const *av;
av = argv;
fputs (*av, fp);
while (*++av)
{
fputs (filler, fp);
fputs (*av, fp);
}
if (ferror (fp))
bb_error_msg_and_die("write error");
}
/* Return the number of kilobytes corresponding to a number of pages PAGES.
(Actually, we use it to convert pages*ticks into kilobytes*ticks.)
Try to do arithmetic so that the risk of overflow errors is minimized.
This is funky since the pagesize could be less than 1K.
Note: Some machines express getrusage statistics in terms of K,
others in terms of pages. */
static unsigned long ptok (unsigned long pages)
{
static unsigned long ps = 0;
unsigned long tmp;
static long size = LONG_MAX;
/* Initialization. */
if (ps == 0)
ps = (long) getpagesize ();
/* Conversion. */
if (pages > (LONG_MAX / ps))
{ /* Could overflow. */
tmp = pages / 1024; /* Smaller first, */
size = tmp * ps; /* then larger. */
}
else
{ /* Could underflow. */
tmp = pages * ps; /* Larger first, */
size = tmp / 1024; /* then smaller. */
}
return size;
}
/* summarize: Report on the system use of a command.
Copy the FMT argument to FP except that `%' sequences
have special meaning, and `\n' and `\t' are translated into
newline and tab, respectively, and `\\' is translated into `\'.
The character following a `%' can be:
(* means the tcsh time builtin also recognizes it)
% == a literal `%'
C == command name and arguments
* D == average unshared data size in K (ru_idrss+ru_isrss)
* E == elapsed real (wall clock) time in [hour:]min:sec
* F == major page faults (required physical I/O) (ru_majflt)
* I == file system inputs (ru_inblock)
* K == average total mem usage (ru_idrss+ru_isrss+ru_ixrss)
* M == maximum resident set size in K (ru_maxrss)
* O == file system outputs (ru_oublock)
* P == percent of CPU this job got (total cpu time / elapsed time)
* R == minor page faults (reclaims; no physical I/O involved) (ru_minflt)
* S == system (kernel) time (seconds) (ru_stime)
* T == system time in [hour:]min:sec
* U == user time (seconds) (ru_utime)
* u == user time in [hour:]min:sec
* W == times swapped out (ru_nswap)
* X == average amount of shared text in K (ru_ixrss)
Z == page size
* c == involuntary context switches (ru_nivcsw)
e == elapsed real time in seconds
* k == signals delivered (ru_nsignals)
p == average unshared stack size in K (ru_isrss)
* r == socket messages received (ru_msgrcv)
* s == socket messages sent (ru_msgsnd)
t == average resident set size in K (ru_idrss)
* w == voluntary context switches (ru_nvcsw)
x == exit status of command
Various memory usages are found by converting from page-seconds
to kbytes by multiplying by the page size, dividing by 1024,
and dividing by elapsed real time.
FP is the stream to print to.
FMT is the format string, interpreted as described above.
COMMAND is the command and args that are being summarized.
RESP is resource information on the command. */
static void summarize (FILE *fp, const char *fmt, char **command, resource_t *resp)
{
unsigned long r; /* Elapsed real milliseconds. */
unsigned long v; /* Elapsed virtual (CPU) milliseconds. */
if (WIFSTOPPED (resp->waitstatus))
fprintf (fp, "Command stopped by signal %d\n", WSTOPSIG (resp->waitstatus));
else if (WIFSIGNALED (resp->waitstatus))
fprintf (fp, "Command terminated by signal %d\n", WTERMSIG (resp->waitstatus));
else if (WIFEXITED (resp->waitstatus) && WEXITSTATUS (resp->waitstatus))
fprintf (fp, "Command exited with non-zero status %d\n", WEXITSTATUS (resp->waitstatus));
/* Convert all times to milliseconds. Occasionally, one of these values
comes out as zero. Dividing by zero causes problems, so we first
check the time value. If it is zero, then we take `evasive action'
instead of calculating a value. */
r = resp->elapsed.tv_sec * 1000 + resp->elapsed.tv_usec / 1000;
v = resp->ru.ru_utime.tv_sec * 1000 + resp->ru.ru_utime.TV_MSEC +
resp->ru.ru_stime.tv_sec * 1000 + resp->ru.ru_stime.TV_MSEC;
while (*fmt)
{
switch (*fmt)
{
case '%':
switch (*++fmt)
{
case '%': /* Literal '%'. */
putc ('%', fp);
break;
case 'C': /* The command that got timed. */
fprintargv (fp, command, " ");
break;
case 'D': /* Average unshared data size. */
fprintf (fp, "%lu",
MSEC_TO_TICKS (v) == 0 ? 0 :
ptok ((UL) resp->ru.ru_idrss) / MSEC_TO_TICKS (v) +
ptok ((UL) resp->ru.ru_isrss) / MSEC_TO_TICKS (v));
break;
case 'E': /* Elapsed real (wall clock) time. */
if (resp->elapsed.tv_sec >= 3600) /* One hour -> h:m:s. */
fprintf (fp, "%ldh %ldm %02lds",
resp->elapsed.tv_sec / 3600,
(resp->elapsed.tv_sec % 3600) / 60,
resp->elapsed.tv_sec % 60);
else
fprintf (fp, "%ldm %ld.%02lds", /* -> m:s. */
resp->elapsed.tv_sec / 60,
resp->elapsed.tv_sec % 60,
resp->elapsed.tv_usec / 10000);
break;
case 'F': /* Major page faults. */
fprintf (fp, "%ld", resp->ru.ru_majflt);
break;
case 'I': /* Inputs. */
fprintf (fp, "%ld", resp->ru.ru_inblock);
break;
case 'K': /* Average mem usage == data+stack+text. */
fprintf (fp, "%lu",
MSEC_TO_TICKS (v) == 0 ? 0 :
ptok ((UL) resp->ru.ru_idrss) / MSEC_TO_TICKS (v) +
ptok ((UL) resp->ru.ru_isrss) / MSEC_TO_TICKS (v) +
ptok ((UL) resp->ru.ru_ixrss) / MSEC_TO_TICKS (v));
break;
case 'M': /* Maximum resident set size. */
fprintf (fp, "%lu", ptok ((UL) resp->ru.ru_maxrss));
break;
case 'O': /* Outputs. */
fprintf (fp, "%ld", resp->ru.ru_oublock);
break;
case 'P': /* Percent of CPU this job got. */
/* % cpu is (total cpu time)/(elapsed time). */
if (r > 0)
fprintf (fp, "%lu%%", (v * 100 / r));
else
fprintf (fp, "?%%");
break;
case 'R': /* Minor page faults (reclaims). */
fprintf (fp, "%ld", resp->ru.ru_minflt);
break;
case 'S': /* System time. */
fprintf (fp, "%ld.%02ld",
resp->ru.ru_stime.tv_sec,
resp->ru.ru_stime.TV_MSEC / 10);
break;
case 'T': /* System time. */
if (resp->ru.ru_stime.tv_sec >= 3600) /* One hour -> h:m:s. */
fprintf (fp, "%ldh %ldm %02lds",
resp->ru.ru_stime.tv_sec / 3600,
(resp->ru.ru_stime.tv_sec % 3600) / 60,
resp->ru.ru_stime.tv_sec % 60);
else
fprintf (fp, "%ldm %ld.%02lds", /* -> m:s. */
resp->ru.ru_stime.tv_sec / 60,
resp->ru.ru_stime.tv_sec % 60,
resp->ru.ru_stime.tv_usec / 10000);
break;
case 'U': /* User time. */
fprintf (fp, "%ld.%02ld",
resp->ru.ru_utime.tv_sec,
resp->ru.ru_utime.TV_MSEC / 10);
break;
case 'u': /* User time. */
if (resp->ru.ru_utime.tv_sec >= 3600) /* One hour -> h:m:s. */
fprintf (fp, "%ldh %ldm %02lds",
resp->ru.ru_utime.tv_sec / 3600,
(resp->ru.ru_utime.tv_sec % 3600) / 60,
resp->ru.ru_utime.tv_sec % 60);
else
fprintf (fp, "%ldm %ld.%02lds", /* -> m:s. */
resp->ru.ru_utime.tv_sec / 60,
resp->ru.ru_utime.tv_sec % 60,
resp->ru.ru_utime.tv_usec / 10000);
break;
case 'W': /* Times swapped out. */
fprintf (fp, "%ld", resp->ru.ru_nswap);
break;
case 'X': /* Average shared text size. */
fprintf (fp, "%lu",
MSEC_TO_TICKS (v) == 0 ? 0 :
ptok ((UL) resp->ru.ru_ixrss) / MSEC_TO_TICKS (v));
break;
case 'Z': /* Page size. */
fprintf (fp, "%d", getpagesize ());
break;
case 'c': /* Involuntary context switches. */
fprintf (fp, "%ld", resp->ru.ru_nivcsw);
break;
case 'e': /* Elapsed real time in seconds. */
fprintf (fp, "%ld.%02ld",
resp->elapsed.tv_sec,
resp->elapsed.tv_usec / 10000);
break;
case 'k': /* Signals delivered. */
fprintf (fp, "%ld", resp->ru.ru_nsignals);
break;
case 'p': /* Average stack segment. */
fprintf (fp, "%lu",
MSEC_TO_TICKS (v) == 0 ? 0 :
ptok ((UL) resp->ru.ru_isrss) / MSEC_TO_TICKS (v));
break;
case 'r': /* Incoming socket messages received. */
fprintf (fp, "%ld", resp->ru.ru_msgrcv);
break;
case 's': /* Outgoing socket messages sent. */
fprintf (fp, "%ld", resp->ru.ru_msgsnd);
break;
case 't': /* Average resident set size. */
fprintf (fp, "%lu",
MSEC_TO_TICKS (v) == 0 ? 0 :
ptok ((UL) resp->ru.ru_idrss) / MSEC_TO_TICKS (v));
break;
case 'w': /* Voluntary context switches. */
fprintf (fp, "%ld", resp->ru.ru_nvcsw);
break;
case 'x': /* Exit status. */
fprintf (fp, "%d", WEXITSTATUS (resp->waitstatus));
break;
case '\0':
putc ('?', fp);
return;
default:
putc ('?', fp);
putc (*fmt, fp);
}
++fmt;
break;
case '\\': /* Format escape. */
switch (*++fmt)
{
case 't':
putc ('\t', fp);
break;
case 'n':
putc ('\n', fp);
break;
case '\\':
putc ('\\', fp);
break;
default:
putc ('?', fp);
putc ('\\', fp);
putc (*fmt, fp);
}
++fmt;
break;
default:
putc (*fmt++, fp);
}
if (ferror (fp))
bb_error_msg_and_die("write error");
}
putc ('\n', fp);
if (ferror (fp))
bb_error_msg_and_die("write error");
}
/* Run command CMD and return statistics on it.
Put the statistics in *RESP. */
static void run_command (char *const *cmd, resource_t *resp)
{
pid_t pid; /* Pid of child. */
__sighandler_t interrupt_signal, quit_signal;
gettimeofday (&resp->start, (struct timezone *) 0);
pid = fork (); /* Run CMD as child process. */
if (pid < 0)
bb_error_msg_and_die("cannot fork");
else if (pid == 0)
{ /* If child. */
/* Don't cast execvp arguments; that causes errors on some systems,
versus merely warnings if the cast is left off. */
execvp (cmd[0], cmd);
bb_error_msg("cannot run %s", cmd[0]);
_exit (errno == ENOENT ? 127 : 126);
}
/* Have signals kill the child but not self (if possible). */
interrupt_signal = signal (SIGINT, SIG_IGN);
quit_signal = signal (SIGQUIT, SIG_IGN);
if (resuse_end (pid, resp) == 0)
bb_error_msg("error waiting for child process");
/* Re-enable signals. */
signal (SIGINT, interrupt_signal);
signal (SIGQUIT, quit_signal);
}
extern int time_main (int argc, char **argv)
{
int gotone;
resource_t res;
const char *output_format = default_format;
argc--;
argv++;
/* Parse any options -- don't use getopt() here so we don't
* consume the args of our client application... */
while (argc > 0 && **argv == '-') {
gotone = 0;
while (gotone==0 && *++(*argv)) {
switch (**argv) {
case 'v':
output_format = long_format;
break;
case 'p':
output_format = posix_format;
break;
default:
bb_show_usage();
}
argc--;
argv++;
gotone = 1;
}
}
if (argv == NULL || *argv == NULL)
bb_show_usage();
run_command (argv, &res);
summarize (stderr, output_format, argv, &res);
fflush (stderr);
if (WIFSTOPPED (res.waitstatus))
exit (WSTOPSIG (res.waitstatus));
else if (WIFSIGNALED (res.waitstatus))
exit (WTERMSIG (res.waitstatus));
else if (WIFEXITED (res.waitstatus))
exit (WEXITSTATUS (res.waitstatus));
return 0;
}
|