1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <zlib.h>
#include <pthread.h>
#include <errno.h>
#include "ksw.h"
#include "kseq.h"
#include "kstring.h"
#include "bwa.h"
#include "utils.h"
KSEQ_DECLARE(gzFile)
#ifdef USE_MALLOC_WRAPPERS
# include "malloc_wrap.h"
#endif
#define MAX_SCORE_RATIO 0.9f
#define MAX_ERR 8
static const char *err_msg[MAX_ERR+1] = {
"successful merges",
"low-scoring pairs",
"pairs where the best SW alignment is not an overlap (long left end)",
"pairs where the best SW alignment is not an overlap (long right end)",
"pairs with large 2nd best SW score",
"pairs with gapped overlap",
"pairs where the end-to-end alignment is inconsistent with SW",
"pairs potentially with tandem overlaps",
"pairs with high sum of errors"
};
typedef struct {
int a, b, q, r, w;
int q_def, q_thres;
int T;
int chunk_size;
int n_threads;
int flag; // bit 1: print merged; 2: print unmerged
int8_t mat[25];
} pem_opt_t;
pem_opt_t *pem_opt_init()
{
pem_opt_t *opt;
opt = calloc(1, sizeof(pem_opt_t));
opt->a = 5; opt->b = 4; opt->q = 2, opt->r = 17; opt->w = 20;
opt->T = opt->a * 10;
opt->q_def = 20;
opt->q_thres = 70;
opt->chunk_size = 10000000;
opt->n_threads = 1;
opt->flag = 3;
bwa_fill_scmat(opt->a, opt->b, opt->mat);
return opt;
}
int bwa_pemerge(const pem_opt_t *opt, bseq1_t x[2])
{
uint8_t *s[2], *q[2], *seq, *qual;
int i, xtra, l, l_seq, sum_q, ret = 0;
kswr_t r;
s[0] = malloc(x[0].l_seq); q[0] = malloc(x[0].l_seq);
s[1] = malloc(x[1].l_seq); q[1] = malloc(x[1].l_seq);
for (i = 0; i < x[0].l_seq; ++i) {
int c = x[0].seq[i];
s[0][i] = c < 0 || c > 127? 4 : c <= 4? c : nst_nt4_table[c];
q[0][i] = x[0].qual? x[0].qual[i] - 33 : opt->q_def;
}
for (i = 0; i < x[1].l_seq; ++i) {
int c = x[1].seq[x[1].l_seq - 1 - i];
c = c < 0 || c > 127? 4 : c < 4? c : nst_nt4_table[c];
s[1][i] = c < 4? 3 - c : 4;
q[1][i] = x[1].qual? x[1].qual[x[1].l_seq - 1 - i] - 33 : opt->q_def;
}
xtra = KSW_XSTART | KSW_XSUBO;
r = ksw_align(x[1].l_seq, s[1], x[0].l_seq, s[0], 5, opt->mat, opt->q, opt->r, xtra, 0);
++r.qe; ++r.te; // change to the half-close-half-open coordinates
if (r.score < opt->T) { ret = -1; goto pem_ret; } // poor alignment
if (r.tb < r.qb) { ret = -2; goto pem_ret; } // no enough space for the left end
if (x[0].l_seq - r.te > x[1].l_seq - r.qe) { ret = -3; goto pem_ret; } // no enough space for the right end
if ((double)r.score2 / r.score >= MAX_SCORE_RATIO) { ret = -4; goto pem_ret; } // the second best score is too large
if (r.qe - r.qb != r.te - r.tb) { ret = -5; goto pem_ret; } // we do not allow gaps
{ // test tandem match; O(n^2)
int max_m, max_m2, min_l, max_l, max_l2;
max_m = max_m2 = 0; max_l = max_l2 = 0;
min_l = x[0].l_seq < x[1].l_seq? x[0].l_seq : x[1].l_seq;
for (l = 1; l < min_l; ++l) {
int m = 0, o = x[0].l_seq - l;
uint8_t *s0o = &s[0][o], *s1 = s[1];
for (i = 0; i < l; ++i) // TODO: in principle, this can be done with SSE2. It is the bottleneck!
m += opt->mat[(s1[i]<<2) + s1[i] + s0o[i]]; // equivalent to s[1][i]*5 + s[0][o+i]
if (m > max_m) max_m2 = max_m, max_m = m, max_l2 = max_l, max_l = l;
else if (m > max_m2) max_m2 = m, max_l2 = l;
}
if (max_m < opt->T || max_l != x[0].l_seq - (r.tb - r.qb)) { ret = -6; goto pem_ret; }
if (max_l2 < max_l && max_m2 >= opt->T && (double)(max_m2 + (max_l - max_l2) * opt->a) / max_m >= MAX_SCORE_RATIO) {
ret = -7; goto pem_ret;
}
if (max_l2 > max_l && (double)max_m2 / max_m >= MAX_SCORE_RATIO) { ret = -7; goto pem_ret; }
}
l = x[0].l_seq - (r.tb - r.qb); // length to merge
l_seq = x[0].l_seq + x[1].l_seq - l;
seq = malloc(l_seq + 1);
qual = malloc(l_seq + 1);
memcpy(seq, s[0], x[0].l_seq); memcpy(seq + x[0].l_seq, &s[1][l], x[1].l_seq - l);
memcpy(qual, q[0], x[0].l_seq); memcpy(qual + x[0].l_seq, &q[1][l], x[1].l_seq - l);
for (i = 0, sum_q = 0; i < l; ++i) {
int k = x[0].l_seq - l + i;
if (s[0][k] == 4) { // ambiguous
seq[k] = s[1][i];
qual[k] = q[1][i];
} else if (s[1][i] == 4) { // do nothing
} else if (s[0][k] == s[1][i]) {
qual[k] = qual[k] > q[1][i]? qual[k] : q[1][i];
} else { // s[0][k] != s[1][i] and neither is N
int qq = q[0][k] < q[1][i]? q[0][k] : q[1][i];
sum_q += qq >= 3? qq<<1 : 1;
seq[k] = q[0][k] > q[1][i]? s[0][k] : s[1][i];
qual[k] = abs((int)q[0][k] - (int)q[1][i]);
}
}
if (sum_q>>1 > opt->q_thres) { // too many mismatches
free(seq); free(qual);
ret = -8; goto pem_ret;
}
for (i = 0; i < l_seq; ++i) seq[i] = "ACGTN"[(int)seq[i]], qual[i] += 33;
seq[l_seq] = qual[l_seq] = 0;
free(x[1].name); free(x[1].seq); free(x[1].qual); free(x[1].comment);
memset(&x[1], 0, sizeof(bseq1_t));
free(x[0].seq); free(x[0].qual);
x[0].l_seq = l_seq; x[0].seq = (char*)seq; x[0].qual = (char*)qual;
pem_ret:
free(s[0]); free(s[1]); free(q[0]); free(q[1]);
return ret;
}
static inline void print_bseq(const bseq1_t *s, int rn)
{
err_putchar(s->qual? '@' : '>');
err_fputs(s->name, stdout);
if (rn == 1 || rn == 2) {
err_putchar('/'); err_putchar('0' + rn); err_putchar('\n');
} else err_puts(" merged");
err_puts(s->seq);
if (s->qual) {
err_puts("+"); err_puts(s->qual);
}
}
typedef struct {
int n, start;
bseq1_t *seqs;
int64_t cnt[MAX_ERR+1];
const pem_opt_t *opt;
} worker_t;
void *worker(void *data)
{
worker_t *w = (worker_t*)data;
int i;
for (i = w->start; i < w->n>>1; i += w->opt->n_threads)
++w->cnt[-bwa_pemerge(w->opt, &w->seqs[i<<1])];
return 0;
}
static void process_seqs(const pem_opt_t *opt, int n_, bseq1_t *seqs, int64_t cnt[MAX_ERR+1])
{
int i, j, n = n_>>1<<1;
worker_t *w;
w = calloc(opt->n_threads, sizeof(worker_t));
for (i = 0; i < opt->n_threads; ++i) {
worker_t *p = &w[i];
p->start = i; p->n = n;
p->opt = opt;
p->seqs = seqs;
}
if (opt->n_threads == 1) {
worker(w);
} else {
pthread_t *tid;
tid = (pthread_t*)calloc(opt->n_threads, sizeof(pthread_t));
for (i = 0; i < opt->n_threads; ++i) pthread_create(&tid[i], 0, worker, &w[i]);
for (i = 0; i < opt->n_threads; ++i) pthread_join(tid[i], 0);
free(tid);
}
for (i = 0; i < opt->n_threads; ++i) {
worker_t *p = &w[i];
for (j = 0; j <= MAX_ERR; ++j) cnt[j] += p->cnt[j];
}
free(w);
for (i = 0; i < n>>1; ++i) {
if (seqs[i<<1|1].l_seq != 0) {
if (opt->flag&2) {
print_bseq(&seqs[i<<1|0], 1);
print_bseq(&seqs[i<<1|1], 2);
}
} else if (opt->flag&1)
print_bseq(&seqs[i<<1|0], 0);
}
for (i = 0; i < n; ++i) {
bseq1_t *s = &seqs[i];
free(s->name); free(s->seq); free(s->qual); free(s->comment);
}
}
int main_pemerge(int argc, char *argv[])
{
int c, flag = 0, i, n, min_ovlp = 10;
int64_t cnt[MAX_ERR+1];
bseq1_t *bseq;
gzFile fp, fp2 = 0;
kseq_t *ks, *ks2 = 0;
pem_opt_t *opt;
opt = pem_opt_init();
while ((c = getopt(argc, argv, "muQ:t:T:")) >= 0) {
if (c == 'm') flag |= 1;
else if (c == 'u') flag |= 2;
else if (c == 'Q') opt->q_thres = atoi(optarg);
else if (c == 't') opt->n_threads = atoi(optarg);
else if (c == 'T') min_ovlp = atoi(optarg);
else return 1;
}
if (flag == 0) flag = 3;
opt->flag = flag;
opt->T = opt->a * min_ovlp;
if (optind == argc) {
fprintf(stderr, "\n");
fprintf(stderr, "Usage: bwa pemerge [-mu] <read1.fq> [read2.fq]\n\n");
fprintf(stderr, "Options: -m output merged reads only\n");
fprintf(stderr, " -u output unmerged reads only\n");
fprintf(stderr, " -t INT number of threads [%d]\n", opt->n_threads);
fprintf(stderr, " -T INT minimum end overlap [%d]\n", min_ovlp);
fprintf(stderr, " -Q INT max sum of errors [%d]\n", opt->q_thres);
fprintf(stderr, "\n");
free(opt);
return 1;
}
fp = strcmp(argv[optind], "-")? gzopen(argv[optind], "r") : gzdopen(fileno(stdin), "r");
if (NULL == fp) {
fprintf(stderr, "Couldn't open %s : %s\n",
strcmp(argv[optind], "-") ? argv[optind] : "stdin",
errno ? strerror(errno) : "Out of memory");
exit(EXIT_FAILURE);
}
ks = kseq_init(fp);
if (optind + 1 < argc) {
fp2 = strcmp(argv[optind+1], "-")? gzopen(argv[optind+1], "r") : gzdopen(fileno(stdin), "r");
if (NULL == fp) {
fprintf(stderr, "Couldn't open %s : %s\n",
strcmp(argv[optind+1], "-") ? argv[optind+1] : "stdin",
errno ? strerror(errno) : "Out of memory");
exit(EXIT_FAILURE);
}
ks2 = kseq_init(fp2);
}
memset(cnt, 0, 8 * (MAX_ERR+1));
while ((bseq = bseq_read(opt->n_threads * opt->chunk_size, &n, ks, ks2)) != 0) {
process_seqs(opt, n, bseq, cnt);
free(bseq);
}
fprintf(stderr, "%12ld %s\n", (long)cnt[0], err_msg[0]);
for (i = 1; i <= MAX_ERR; ++i)
fprintf(stderr, "%12ld %s\n", (long)cnt[i], err_msg[i]);
kseq_destroy(ks);
err_gzclose(fp);
if (ks2) {
kseq_destroy(ks2);
err_gzclose(fp2);
}
free(opt);
err_fflush(stdout);
return 0;
}
|