File: cauchy.yo

package info (click to toggle)
c%2B%2B-annotations 10.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 10,536 kB
  • ctags: 3,247
  • sloc: cpp: 19,157; makefile: 1,521; ansic: 165; sh: 128; perl: 90
file content (40 lines) | stat: -rw-r--r-- 1,465 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
The ti(cauchy_distribution<RealType = double>) looks similar to a normal
distribution. But cauchy distributions have heavier tails.  When studying
hypothesis tests that assume normality, seeing how the tests perform on data
from a Cauchy distribution is a good indicator of how sensitive the tests are
to heavy-tail departures from normality.

The mean and standard deviation of the Cauchy distribution are undefined.

Defined types:
        verb(
    typedef RealType result_type;

    struct param_type
    {
        explicit param_type(RealType a = RealType(0),
                            RealType b = RealType(1));

        double a() const;
        double b() const;
    };
            )

Constructors and members:
    itemization(
    itt(cauchy_distribution<>(RealType a = RealType(0),
                            RealType b = RealType(1)))
        constructs a cauchy distribution with specified tt(a) and tt(b)
        parameters.
    itt(cauchy_distribution<>(param_type const &param))
        constructs a cauchy distribution according to the values stored in
        the tt(param) struct.
    itt(RealType a() const)nl()
        returns the distribution's tt(a) parameter;
    itt(RealType b() const)nl()
        returns the distribution's tt(b) parameter;
    itt(result_type min() const)nl()
        returns the smallest positive tt(result_type) value;
    itt(result_type max() const)nl()
        returns the maximum value of tt(result_type);
    )