1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
|
The ti(negative_binomial_distribution<IntType = int>) probability distribution
describes the number of successes in a sequence of Bernoulli trials before a
specified number of failures occurs. For example, if one throws a die
repeatedly until the third time 1 appears, then the probability distribution
of the number of other faces that have appeared is a negative binomial
distribution.
It has two parameters: (tt(IntType)) k (> 0), being the number of failures
until the experiment is stopped and (tt(double)) p the probability of success
in each individual experiment.
Defined types:
verb(
typedef IntType result_type;
struct param_type
{
explicit param_type(IntType k = IntType(1), double p = 0.5);
IntType k() const;
double p() const;
};
)
Constructors and members:
itemization(
itt(negative_binomial_distribution<>(IntType k = IntType(1),
double p = 0.5))
constructs a negative_binomial distribution with specified tt(k) and
tt(p) parameters;
itt(negative_binomial_distribution<>(param_type const ¶m))
constructs a negative_binomial distribution according to the values
stored in the tt(param) struct.
itt(IntType k() const)nl()
returns the distribution's tt(k) parameter;
itt(double p() const)nl()
returns the distribution's tt(p) parameter;
itt(result_type min() const)nl()
returns 0;
itt(result_type max() const)nl()
returns the maximum value of tt(result_type);
)
|