1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
bf(C++) offers many facilities to identify and modifiy characteristics of
types. Before using these facilities the tthi(type_traits) header file must be
included.
All facilities offered by tt(type_traits) are defined in the tt(std)
namespace (omitted from the examples given below), allowing programmers to
determine various characteristics of types and values.
In the description of available type traits the following concepts are
encountered:
itemization(
it() emi(arithmetic type):
any integral or floating point type;
it() emi(class type):
not a union type, without non-static data members, without virtual
members, without virtual or non-empty base classes;
it() emi(compound type):
itemization(
it() arrays of objects of a given type;
it() functions, which have parameters of a given type returning
tt(void) or objects;
it() pointers to tt(void), to objects, to functions, or to
non-static class members;
it() references to objects or functions;
it() class, union or enumeration types;
)
it() emi(fundamental type):
a built-in type;
it() emi(integral type):
all types whose values represent integral numbers, as well as tt(bool)
and all built-in types representing (possibly unicode) characters;
it() emi(literal type):
a literal type is a scalar type; a trivial class type; or an array of
literal type elements;
it() emi(is_nothrow_... type trait):
a type trait to determine whether its template argument supports the
specified non-throwing member. Such type traits return tt(false)
unless tt(noexcept(true)) is used at the function's declaration. E.g.,
verb( struct NoThrow
{
NoThrow &operator=(SomeType const &rhs) noexept(true);
};)
it() emi(trivial type):
trivial types are scalar types, trivial class types, arrays of such
types and cv-qualified versions of these types;
it() emi(trivial class type):
a class type having a trivial copy constructor, no non-trivial move
constructor, a trivial destructor, a trivial default constructor or at
least one tt(constexpr) constructor other than the copy or move
constructor, and only has non-static data members and base classes of
literal types;
it() emi(trivial member function):
trivial member functions are never declared (other than tt(default)) in
their class interfaces and (for default constructors or assignment
operators) only perform byte-by-byte actions. Here are two examples:
tt(struct Pod) only has trivial members as it doesn't explicitly
declare any member function and its data member is em(plain old
data). tt(struct Nonpod) is em(not) plain old data. Although it
doesn't explictly declare any member function either, its data member
is a tt(std::string), which itself isn't plain old data as
tt(std::string) has non-trivial constructors:
verb( struct Pod
{
int x;
};
struct Nonpod
{
std::string s;
};)
)
When em(type-condition) applies to a type, it must be a complete type,
tt(void), or an array of unknown size;
The following type traits are provided:
itemization(
itt(add_const<typename Type>::type)
hi(add_const) to add tt(const) to tt(Type);
itt(add_cv<typename Type>::type)
hi(add_cv) to add tt(const volatile) to tt(Type);
itt(add_lvalue_reference<typename Type>::type)
hi(add_lvalue_reference) to add an lvalue reference to tt(Type);
itt(add_pointer<typename Type>::type)
hi(add_pointer) to add a pointer to tt(Type);
itt(add_rvalue_reference<typename Type>::type)
hi(add_rvalue_reference) to add an rvalue reference to tt(Type);
itt(add_volatile<typename Type>::type)
hi(add_volatile) to add tt(volatile) to tt(Type);
itt(conditional<bool cond, typename TrueType, typename FalseType>::type)
hi(conditional) to conditionally use tt(TrueType) if tt(cond) is true,
tt(FalseType) if not;
itt(template <typename Type> struct decay)
hi(decay) defines the typename tt(type) obtained from tt(Type) after
removing all cv-qualifiers and references from the specified template
type argument. Moreover, it converts lvalue types to rvalue types,
and arrays and functions to pointers. It resembles what happens if an
argument is passed to a value-type parameter.
itt(template <typename Type> decay_t)
hi(decay_t) is shorthand for tt(typename decay<Type>::type).
itt(enable_if<bool cond, typename Type>::type)
hi(enable_if) to conditionally define tt(Type) if tt(cond) is true;
COMMENT(
use is_ variants instead
========================
commented: itt(has_nothrow_assign<typename Type>::value)
hi(has_nothrow_assign) to determine whether tt(Type) has an assignment
operator not throwing exceptions;
commented: itt(has_nothrow_copy_constructor<typename Type>::value)
hi(has_nothrow_copy_constructor) to determine whether tt(Type) has a
copy constructor not throwing exceptions;
commented: itt(has_nothrow_default_constructor<typename Type>::value)
hi(has_nothrow_default_constructor) to determine whether tt(Type) has a
constructor not throwing exceptions;
commented: itt(has_nothrow_destructor<typename Type>::value)
hi(has_nothrow_destructor) to determine whether tt(Type) has a
destructor not throwing exceptions;
commented: itt(has_trivial_assign<typename Type>::value)
hi(has_trivial_assign) to determine whether tt(Type) has a trivial
assignment operator;
commented: itt(has_trivial_copy_constructor<typename Type>::value)
hi(has_trivial_copy_constructor) to determine whether tt(Type) has a
trivial copy constructor;
commented: itt(has_trivial_default_constructor<typename Type>::value)
hi(has_trivial_copy_constructor) to determine whether tt(Type) has a
trivial default constructor;
commented: itt(has_trivial_destructor<typename Type>::value)
hi(has_trivial_destructor) to determine whether tt(Type) has a trivial
destructor;
commented: itt(has_virtual_destructor<typename Type>::value)
hi(has_virtual_destructor) to determine whether tt(Type) has a virtual
destructor;
===========================
END COMMENT)
itt(is_abstract<typename Type>::value)
hi(is_abstract) to determine whether tt(Type) is an abstract type
(e.g., an abstract base class) (em(type-condition) applies);
itt(is_arithmetic<typename Type>::value)
hi(is_arithmetic) to determine whether tt(Type) is an arithmetic type;
itt(is_array<typename Type>::value)
hi(is_array) to determine whether tt(Type) is an array type;
itt(is_assignable<typename To, typename From>::value)
hi(is_assignable) to determine whether an object of type tt(From) can
be assigned to an object of type tt(To) (em(type-condition) applies);
itt(is_base_of<typename Base, typename Derived>::value)
hi(is_base_of) to determine whether tt(Base) is a base class
of type tt(Derived);
itt(is_class<typename Type>::value)
hi(is_class) to determine whether tt(Type) is a class type;
itt(is_compound<typename Type>::value)
hi(is_compound) to determine whether tt(Type) is a compound type;
itt(is_const<typename Type>::value)
hi(is_const) to determine whether tt(Type) is a const type;
itt(is_constructible<typename Type, typename ...Args>::value)
hi(is_constructible) to determine whether tt(Type) is constructible
from arguments in the tt(Args) parameter pack (em(type-condition)
applies to all types in tt(Args));
itt(is_convertible<typename From, typename To>::value)
hi(is_convertible) to determine whether a type tt(From) may be
converted to a type tt(To) using a tt(static_cast);
itt(is_copy_assignable<typename Type>::value)
hi(is_copy_assignable) to determine whether tt(Type) supports copy
assignment (em(type-condition) applies);
itt(is_copy_constructible<typename Type>::value)
hi(is_copy_constructible) to determine whether tt(Type) supports copy
construction (em(type-condition) applies);
itt(is_default_constructible<typename Type>::value)
hi(is_default_constructible) to determine whether tt(Type) supports a
default constructor (em(type-condition) applies);
itt(is_destructible<typename Type>::value)
hi(is_destructible) to determine whether tt(Type) has a non-deleted
destructor (em(type-condition) applies);
itt(is_empty<typename Type>::value)
hi(is_empty) to determine whether tt(Type) is a class type (not a union
type), without non-static data members, virtual members, virtual or
non-empty base classes (em(type-condition) applies);
itt(is_enum<typename Type>::value)
hi(is_enum) to determine whether tt(Type) is an enum type;
itt(is_floating_point<typename Type>::value)
hi(is_floating_point) to determine whether tt(Type) is a floating point
type;
itt(is_function<typename Type>::value)
hi(is_function) to determine whether tt(Type) is a function type;
itt(is_fundamental<typename Type>::value)
hi(is_fundamental) to determine whether tt(Type) is a fundamental type;
itt(is_integral<typename Type>::value)
hi(is_integral) to determine whether tt(Type) is an integral type;
itt(is_literal_type<typename Type>::value)
hi(is_literal_type) to determine whether tt(Type) is a literal type
(em(type-condition) applies);
itt(is_lvalue_reference<typename Type>::value)
hi(is_lvalue_reference) to determine whether tt(Type) is an lvalue
reference;
itt(is_member_function_pointer<typename Type>::value)
hi(is_member_function_pointer) to determine whether tt(Type) is a
pointer to a non-static member function;
itt(is_member_object_pointer<typename Type>::value)
hi(is_member_object_pointer) to determine whether tt(Type) is a pointer
to a non-static data member;
itt(is_member_pointer<typename Type>::value)
hi(is_member_pointer) to determine whether tt(Type) is a pointer to a
member function;
itt(is_move_assignable<typename Type>::value)
hi(is_move_assignable) to determine whether tt(Type) supports move
assignment (em(type-condition) applies);
itt(is_move_constructible<typename Type>::value)
hi(is_move_constructible) to determine whether tt(Type) supports move
construction (em(type-condition) applies);
itt(is_nothrow_assignable<typename To, typename From>::value)
hi(is_nothrow_assignable) to determine whether tt(Type) supports an
assignment operator not throwing exceptions (em(type-condition)
applies).
itt(is_nothrow_constructible<typename Type, typename ...Args>::value)
hi(is_nothrow_constructible) to determine whether a tt(Type) object can
be constructed from arguments of types mentioned in the parameter pack
not throwing exceptions (em(type-condition) applies);
itt(is_nothrow_copy_assignable<typename Type>::value)
hi(is_nothrow_constructible) to determine whether tt(Type) supports a
copy-assignment operator not throwing exceptions (em(type-condition)
applies);
itt(is_nothrow_copy_constructible<typename Type>::value)
hi(is_nothrow_copy_constructible) to determine whether tt(Type)
supports copy construction not throwing exceptions (em(type-condition)
applies);
itt(is_nothrow_default_constructible<typename Type>::value)
hi(is_nothrow_default_constructible) to determine whether tt(Type)
supports a default constructor not throwing exceptions
(em(type-condition) applies);
itt(is_nothrow_destructible<typename Type>::value)
hi(is_nothrow_destructible) to determine whether tt(Type) supports a
destructor not throwing exceptions (em(type-condition) applies).
itt(is_nothrow_move_assignable<typename Type>::value)
hi(is_nothrow_move_assignable) to determine whether tt(Type) supports
move assignment not throwing exceptions (em(type-condition) applies);
itt(is_nothrow_move_constructible<typename Type>::value)
hi(is_nothrow_move_constructible) to determine whether tt(Type)
supports a move constructor not throwing exceptions
(em(type-condition) applies);
itt(is_object<typename Type>::value)
hi(is_object) to determine whether tt(Type) is an object (in contrast
to scalar) type;
itt(is_pod<typename Type>::value)
hi(is_pod) to determine whether tt(Type) is an emi(aggregate)
(emi(plain old data),
em(type-condition) applies);
itt(is_pointer<typename Type>::value)
hi(is_pointer) to determine whether tt(Type) is a pointer type;
itt(is_polymorphic<typename Type>::value)
hi(is_polymorphic) to determine whether tt(Type) is a polymorphic type
(em(type-condition) applies);
itt(is_reference<typename Type>::value)
hi(is_reference) to determine whether tt(Type) is an (lvalue or rvalue)
reference;
itt(is_rvalue_reference<typename Type>::value)
hi(is_rvalue_reference) to determine whether tt(Type) is an rvalue
reference;
itt(is_same<typename First, typename Second>::value)
hi(is_same) to determine whether types tt(First) and tt(Second) are
identical;
itt(is_scalar<typename Type>::value)
hi(is_scalar) to determine whether tt(Type) is a scalar type (in
contrast to an object type);
itt(is_signed<typename Type>::value)
hi(is_signed) to determine whether tt(Type) is a signed type;
itt(is_standard_layout<typename Type>::value)
hi(is_standard_layout) to determine whether tt(Type) offers the
standard layout (em(type-condition) applies);
itt(is_trivial<typename Type>::value)
hi(is_trivial) to determine whether tt(Type) is a trivial type
(em(type-condition) applies);
itt(is_trivially_assignable<typename Dest, typename Src>::value)
hi(is_trivially_assignable) to determine whether an object or value of
type tt(Src) can trivially be assigned to an object of type tt(Dest)
(em(type-condition) applies);
itt(is_trivially_constructible<typename Type, typename ...Args>::value)
hi(is_trivially_constructible) to determine whether tt(Type) is
trivially constructible from arguments in the tt(Args) parameter pack
(em(type-condition) applies to all types in tt(Args));
itt(is_trivially_copy_assignable<typename Type>::value)
hi(is_trivially_copy_assignable) to determine whether tt(Type) supports
a trivial assignment operator (em(type-condition) applies);
itt(is_trivially_copy_constructible<typename Type>::value)
hi(is_trivially_copy_constructible) to determine whether tt(Type) is
trivially copy-constructible (em(type-condition) applies);
itt(is_trivially_copyable<typename Type>::value)
hi(is_trivially_copyable) to determine whether tt(Type) is trivially
copyable (em(type-condition) applies);
itt(is_trivially_default_constructible<typename Type>::value)
hi(is_trivially_default_constructible) to determine whether tt(Type)
supports a trivial default constructor (em(type-condition) applies);
itt(is_trivially_default_destructible<typename Type>::value)
hi(is_trivially_default_destructible) to determine whether tt(Type)
supports a trivial default destructor (em(type-condition) applies);
itt(is_trivially_move_assignable<typename Type>::value)
hi(is_trivially_move_assignable) to determine whether tt(Type) supports
a trivial assignment operator (em(type-condition) applies);
itt(is_trivially_move_constructible<typename Type>::value)
hi(is_trivially_move_constructible) to determine whether tt(Type) is
trivially move-constructible (em(type-condition) applies);
itt(is_union<typename Type>::value)
hi(is_union) to determine whether tt(Type) is a union type;
itt(is_unsigned<typename Type>::value)
hi(is_unsigned) to determine whether tt(Type) is an unsigned type;
itt(is_void<typename Type>::value)
hi(is_void) to determine whether tt(Type) is tt(void);
itt(is_volatile<typename Type>::value)
hi(is_volatile) to determine whether tt(Type) is a tt(volatile)
qualified type;
itt(make_signed<typename Type>::type)
hi(make_signed) to construct a signed type;
itt(make_unsigned<typename Type>::type)
hi(make_unsigned) to construct an unsigned type;
itt(remove_all_extents<typename Type>::type)
hi(remove_all_extents) if tt(Type) is a (possibly multidimensional)
array of tt(ElementType) values or objects then tt(typedef type)
equals tt(ElementType);
itt(remove_const<typename Type>::type)
hi(remove_const) to remove tt(const) from tt(Type);
itt(remove_cv<typename Type>::type)
hi(remove_cv) to remove tt(const) and/or tt(volatile) from tt(Type);
itt(remove_extent<typename Type>::type)
hi(remove_extent) if tt(Type) is an array of tt(ElementType) values or
objects then tt(typedef type) equals tt(ElementType). With
multi-dimensional arrays tt(ElementType) is the type of the array from
which its first array dimension has been removed;
itt(remove_pointer<typename Type>::type)
hi(remove_pointer) to remove a pointer from tt(Type);
itt(remove_reference<typename Type>::type)
hi(remove_reference) to remove a reference from tt(Type);
itt(remove_volatile<typename Type>::type)
hi(remove_volatile) to remove tt(volatile) from tt(Type);
)
|