1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
|
/*********************************************************************
Blosc - Blocked Shuffling and Compression Library
Author: Francesc Alted <francesc@blosc.org>
See LICENSE.txt for details about copyright and rights to use.
**********************************************************************/
#include "shuffle-generic.h"
#include "shuffle-sse2.h"
/* Define dummy functions if SSE2 is not available for the compilation target and compiler. */
#if !defined(__SSE2__)
void
blosc_internal_shuffle_sse2(const size_t bytesoftype, const size_t blocksize,
const uint8_t* const _src, uint8_t* const _dest) {
abort();
}
void
blosc_internal_unshuffle_sse2(const size_t bytesoftype, const size_t blocksize,
const uint8_t* const _src, uint8_t* const _dest) {
abort();
}
# else /* defined(__SSE2__) */
#include <emmintrin.h>
/* The next is useful for debugging purposes */
#if 0
#include <stdio.h>
#include <string.h>
static void printxmm(__m128i xmm0)
{
uint8_t buf[16];
((__m128i *)buf)[0] = xmm0;
printf("%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x,%x\n",
buf[0], buf[1], buf[2], buf[3],
buf[4], buf[5], buf[6], buf[7],
buf[8], buf[9], buf[10], buf[11],
buf[12], buf[13], buf[14], buf[15]);
}
#endif
/* Routine optimized for shuffling a buffer for a type size of 2 bytes. */
static void
shuffle2_sse2(uint8_t* const dest, const uint8_t* const src,
const size_t vectorizable_elements, const size_t total_elements)
{
static const size_t bytesoftype = 2;
size_t j;
int k;
uint8_t* dest_for_jth_element;
__m128i xmm0[2], xmm1[2];
for (j = 0; j < vectorizable_elements; j += sizeof(__m128i)) {
/* Fetch 16 elements (32 bytes) then transpose bytes, words and double words. */
for (k = 0; k < 2; k++) {
xmm0[k] = _mm_loadu_si128((__m128i*)(src + (j * bytesoftype) + (k * sizeof(__m128i))));
xmm0[k] = _mm_shufflelo_epi16(xmm0[k], 0xd8);
xmm0[k] = _mm_shufflehi_epi16(xmm0[k], 0xd8);
xmm0[k] = _mm_shuffle_epi32(xmm0[k], 0xd8);
xmm1[k] = _mm_shuffle_epi32(xmm0[k], 0x4e);
xmm0[k] = _mm_unpacklo_epi8(xmm0[k], xmm1[k]);
xmm0[k] = _mm_shuffle_epi32(xmm0[k], 0xd8);
xmm1[k] = _mm_shuffle_epi32(xmm0[k], 0x4e);
xmm0[k] = _mm_unpacklo_epi16(xmm0[k], xmm1[k]);
xmm0[k] = _mm_shuffle_epi32(xmm0[k], 0xd8);
}
/* Transpose quad words */
for (k = 0; k < 1; k++) {
xmm1[k*2] = _mm_unpacklo_epi64(xmm0[k], xmm0[k+1]);
xmm1[k*2+1] = _mm_unpackhi_epi64(xmm0[k], xmm0[k+1]);
}
/* Store the result vectors */
dest_for_jth_element = dest + j;
for (k = 0; k < 2; k++) {
_mm_storeu_si128((__m128i*)(dest_for_jth_element + (k * total_elements)), xmm1[k]);
}
}
}
/* Routine optimized for shuffling a buffer for a type size of 4 bytes. */
static void
shuffle4_sse2(uint8_t* const dest, const uint8_t* const src,
const size_t vectorizable_elements, const size_t total_elements)
{
static const size_t bytesoftype = 4;
size_t i;
int j;
uint8_t* dest_for_ith_element;
__m128i xmm0[4], xmm1[4];
for (i = 0; i < vectorizable_elements; i += sizeof(__m128i)) {
/* Fetch 16 elements (64 bytes) then transpose bytes and words. */
for (j = 0; j < 4; j++) {
xmm0[j] = _mm_loadu_si128((__m128i*)(src + (i * bytesoftype) + (j * sizeof(__m128i))));
xmm1[j] = _mm_shuffle_epi32(xmm0[j], 0xd8);
xmm0[j] = _mm_shuffle_epi32(xmm0[j], 0x8d);
xmm0[j] = _mm_unpacklo_epi8(xmm1[j], xmm0[j]);
xmm1[j] = _mm_shuffle_epi32(xmm0[j], 0x04e);
xmm0[j] = _mm_unpacklo_epi16(xmm0[j], xmm1[j]);
}
/* Transpose double words */
for (j = 0; j < 2; j++) {
xmm1[j*2] = _mm_unpacklo_epi32(xmm0[j*2], xmm0[j*2+1]);
xmm1[j*2+1] = _mm_unpackhi_epi32(xmm0[j*2], xmm0[j*2+1]);
}
/* Transpose quad words */
for (j = 0; j < 2; j++) {
xmm0[j*2] = _mm_unpacklo_epi64(xmm1[j], xmm1[j+2]);
xmm0[j*2+1] = _mm_unpackhi_epi64(xmm1[j], xmm1[j+2]);
}
/* Store the result vectors */
dest_for_ith_element = dest + i;
for (j = 0; j < 4; j++) {
_mm_storeu_si128((__m128i*)(dest_for_ith_element + (j * total_elements)), xmm0[j]);
}
}
}
/* Routine optimized for shuffling a buffer for a type size of 8 bytes. */
static void
shuffle8_sse2(uint8_t* const dest, const uint8_t* const src,
const size_t vectorizable_elements, const size_t total_elements)
{
static const size_t bytesoftype = 8;
size_t j;
int k, l;
uint8_t* dest_for_jth_element;
__m128i xmm0[8], xmm1[8];
for (j = 0; j < vectorizable_elements; j += sizeof(__m128i)) {
/* Fetch 16 elements (128 bytes) then transpose bytes. */
for (k = 0; k < 8; k++) {
xmm0[k] = _mm_loadu_si128((__m128i*)(src + (j * bytesoftype) + (k * sizeof(__m128i))));
xmm1[k] = _mm_shuffle_epi32(xmm0[k], 0x4e);
xmm1[k] = _mm_unpacklo_epi8(xmm0[k], xmm1[k]);
}
/* Transpose words */
for (k = 0, l = 0; k < 4; k++, l +=2) {
xmm0[k*2] = _mm_unpacklo_epi16(xmm1[l], xmm1[l+1]);
xmm0[k*2+1] = _mm_unpackhi_epi16(xmm1[l], xmm1[l+1]);
}
/* Transpose double words */
for (k = 0, l = 0; k < 4; k++, l++) {
if (k == 2) l += 2;
xmm1[k*2] = _mm_unpacklo_epi32(xmm0[l], xmm0[l+2]);
xmm1[k*2+1] = _mm_unpackhi_epi32(xmm0[l], xmm0[l+2]);
}
/* Transpose quad words */
for (k = 0; k < 4; k++) {
xmm0[k*2] = _mm_unpacklo_epi64(xmm1[k], xmm1[k+4]);
xmm0[k*2+1] = _mm_unpackhi_epi64(xmm1[k], xmm1[k+4]);
}
/* Store the result vectors */
dest_for_jth_element = dest + j;
for (k = 0; k < 8; k++) {
_mm_storeu_si128((__m128i*)(dest_for_jth_element + (k * total_elements)), xmm0[k]);
}
}
}
/* Routine optimized for shuffling a buffer for a type size of 16 bytes. */
static void
shuffle16_sse2(uint8_t* const dest, const uint8_t* const src,
const size_t vectorizable_elements, const size_t total_elements)
{
static const size_t bytesoftype = 16;
size_t j;
int k, l;
uint8_t* dest_for_jth_element;
__m128i xmm0[16], xmm1[16];
for (j = 0; j < vectorizable_elements; j += sizeof(__m128i)) {
/* Fetch 16 elements (256 bytes). */
for (k = 0; k < 16; k++) {
xmm0[k] = _mm_loadu_si128((__m128i*)(src + (j * bytesoftype) + (k * sizeof(__m128i))));
}
/* Transpose bytes */
for (k = 0, l = 0; k < 8; k++, l +=2) {
xmm1[k*2] = _mm_unpacklo_epi8(xmm0[l], xmm0[l+1]);
xmm1[k*2+1] = _mm_unpackhi_epi8(xmm0[l], xmm0[l+1]);
}
/* Transpose words */
for (k = 0, l = -2; k < 8; k++, l++) {
if ((k%2) == 0) l += 2;
xmm0[k*2] = _mm_unpacklo_epi16(xmm1[l], xmm1[l+2]);
xmm0[k*2+1] = _mm_unpackhi_epi16(xmm1[l], xmm1[l+2]);
}
/* Transpose double words */
for (k = 0, l = -4; k < 8; k++, l++) {
if ((k%4) == 0) l += 4;
xmm1[k*2] = _mm_unpacklo_epi32(xmm0[l], xmm0[l+4]);
xmm1[k*2+1] = _mm_unpackhi_epi32(xmm0[l], xmm0[l+4]);
}
/* Transpose quad words */
for (k = 0; k < 8; k++) {
xmm0[k*2] = _mm_unpacklo_epi64(xmm1[k], xmm1[k+8]);
xmm0[k*2+1] = _mm_unpackhi_epi64(xmm1[k], xmm1[k+8]);
}
/* Store the result vectors */
dest_for_jth_element = dest + j;
for (k = 0; k < 16; k++) {
_mm_storeu_si128((__m128i*)(dest_for_jth_element + (k * total_elements)), xmm0[k]);
}
}
}
/* Routine optimized for shuffling a buffer for a type size larger than 16 bytes. */
static void
shuffle16_tiled_sse2(uint8_t* const dest, const uint8_t* const src,
const size_t vectorizable_elements, const size_t total_elements, const size_t bytesoftype)
{
size_t j;
const size_t vecs_per_el_rem = bytesoftype % sizeof(__m128i);
int k, l;
uint8_t* dest_for_jth_element;
__m128i xmm0[16], xmm1[16];
for (j = 0; j < vectorizable_elements; j += sizeof(__m128i)) {
/* Advance the offset into the type by the vector size (in bytes), unless this is
the initial iteration and the type size is not a multiple of the vector size.
In that case, only advance by the number of bytes necessary so that the number
of remaining bytes in the type will be a multiple of the vector size. */
size_t offset_into_type;
for (offset_into_type = 0; offset_into_type < bytesoftype;
offset_into_type += (offset_into_type == 0 && vecs_per_el_rem > 0 ? vecs_per_el_rem : sizeof(__m128i))) {
/* Fetch elements in groups of 256 bytes */
const uint8_t* const src_with_offset = src + offset_into_type;
for (k = 0; k < 16; k++) {
xmm0[k] = _mm_loadu_si128((__m128i*)(src_with_offset + (j + k) * bytesoftype));
}
/* Transpose bytes */
for (k = 0, l = 0; k < 8; k++, l +=2) {
xmm1[k*2] = _mm_unpacklo_epi8(xmm0[l], xmm0[l+1]);
xmm1[k*2+1] = _mm_unpackhi_epi8(xmm0[l], xmm0[l+1]);
}
/* Transpose words */
for (k = 0, l = -2; k < 8; k++, l++) {
if ((k%2) == 0) l += 2;
xmm0[k*2] = _mm_unpacklo_epi16(xmm1[l], xmm1[l+2]);
xmm0[k*2+1] = _mm_unpackhi_epi16(xmm1[l], xmm1[l+2]);
}
/* Transpose double words */
for (k = 0, l = -4; k < 8; k++, l++) {
if ((k%4) == 0) l += 4;
xmm1[k*2] = _mm_unpacklo_epi32(xmm0[l], xmm0[l+4]);
xmm1[k*2+1] = _mm_unpackhi_epi32(xmm0[l], xmm0[l+4]);
}
/* Transpose quad words */
for (k = 0; k < 8; k++) {
xmm0[k*2] = _mm_unpacklo_epi64(xmm1[k], xmm1[k+8]);
xmm0[k*2+1] = _mm_unpackhi_epi64(xmm1[k], xmm1[k+8]);
}
/* Store the result vectors */
dest_for_jth_element = dest + j;
for (k = 0; k < 16; k++) {
_mm_storeu_si128((__m128i*)(dest_for_jth_element + (total_elements * (offset_into_type + k))), xmm0[k]);
}
}
}
}
/* Routine optimized for unshuffling a buffer for a type size of 2 bytes. */
static void
unshuffle2_sse2(uint8_t* const dest, const uint8_t* const src,
const size_t vectorizable_elements, const size_t total_elements)
{
static const size_t bytesoftype = 2;
size_t i;
int j;
__m128i xmm0[2], xmm1[2];
for (i = 0; i < vectorizable_elements; i += sizeof(__m128i)) {
/* Load 16 elements (32 bytes) into 2 XMM registers. */
const uint8_t* const src_for_ith_element = src + i;
for (j = 0; j < 2; j++) {
xmm0[j] = _mm_loadu_si128((__m128i*)(src_for_ith_element + (j * total_elements)));
}
/* Shuffle bytes */
/* Compute the low 32 bytes */
xmm1[0] = _mm_unpacklo_epi8(xmm0[0], xmm0[1]);
/* Compute the hi 32 bytes */
xmm1[1] = _mm_unpackhi_epi8(xmm0[0], xmm0[1]);
/* Store the result vectors in proper order */
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (0 * sizeof(__m128i))), xmm1[0]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (1 * sizeof(__m128i))), xmm1[1]);
}
}
/* Routine optimized for unshuffling a buffer for a type size of 4 bytes. */
static void
unshuffle4_sse2(uint8_t* const dest, const uint8_t* const src,
const size_t vectorizable_elements, const size_t total_elements)
{
static const size_t bytesoftype = 4;
size_t i;
int j;
__m128i xmm0[4], xmm1[4];
for (i = 0; i < vectorizable_elements; i += sizeof(__m128i)) {
/* Load 16 elements (64 bytes) into 4 XMM registers. */
const uint8_t* const src_for_ith_element = src + i;
for (j = 0; j < 4; j++) {
xmm0[j] = _mm_loadu_si128((__m128i*)(src_for_ith_element + (j * total_elements)));
}
/* Shuffle bytes */
for (j = 0; j < 2; j++) {
/* Compute the low 32 bytes */
xmm1[j] = _mm_unpacklo_epi8(xmm0[j*2], xmm0[j*2+1]);
/* Compute the hi 32 bytes */
xmm1[2+j] = _mm_unpackhi_epi8(xmm0[j*2], xmm0[j*2+1]);
}
/* Shuffle 2-byte words */
for (j = 0; j < 2; j++) {
/* Compute the low 32 bytes */
xmm0[j] = _mm_unpacklo_epi16(xmm1[j*2], xmm1[j*2+1]);
/* Compute the hi 32 bytes */
xmm0[2+j] = _mm_unpackhi_epi16(xmm1[j*2], xmm1[j*2+1]);
}
/* Store the result vectors in proper order */
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (0 * sizeof(__m128i))), xmm0[0]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (1 * sizeof(__m128i))), xmm0[2]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (2 * sizeof(__m128i))), xmm0[1]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (3 * sizeof(__m128i))), xmm0[3]);
}
}
/* Routine optimized for unshuffling a buffer for a type size of 8 bytes. */
static void
unshuffle8_sse2(uint8_t* const dest, const uint8_t* const src,
const size_t vectorizable_elements, const size_t total_elements)
{
static const size_t bytesoftype = 8;
size_t i;
int j;
__m128i xmm0[8], xmm1[8];
for (i = 0; i < vectorizable_elements; i += sizeof(__m128i)) {
/* Load 16 elements (128 bytes) into 8 XMM registers. */
const uint8_t* const src_for_ith_element = src + i;
for (j = 0; j < 8; j++) {
xmm0[j] = _mm_loadu_si128((__m128i*)(src_for_ith_element + (j * total_elements)));
}
/* Shuffle bytes */
for (j = 0; j < 4; j++) {
/* Compute the low 32 bytes */
xmm1[j] = _mm_unpacklo_epi8(xmm0[j*2], xmm0[j*2+1]);
/* Compute the hi 32 bytes */
xmm1[4+j] = _mm_unpackhi_epi8(xmm0[j*2], xmm0[j*2+1]);
}
/* Shuffle 2-byte words */
for (j = 0; j < 4; j++) {
/* Compute the low 32 bytes */
xmm0[j] = _mm_unpacklo_epi16(xmm1[j*2], xmm1[j*2+1]);
/* Compute the hi 32 bytes */
xmm0[4+j] = _mm_unpackhi_epi16(xmm1[j*2], xmm1[j*2+1]);
}
/* Shuffle 4-byte dwords */
for (j = 0; j < 4; j++) {
/* Compute the low 32 bytes */
xmm1[j] = _mm_unpacklo_epi32(xmm0[j*2], xmm0[j*2+1]);
/* Compute the hi 32 bytes */
xmm1[4+j] = _mm_unpackhi_epi32(xmm0[j*2], xmm0[j*2+1]);
}
/* Store the result vectors in proper order */
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (0 * sizeof(__m128i))), xmm1[0]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (1 * sizeof(__m128i))), xmm1[4]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (2 * sizeof(__m128i))), xmm1[2]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (3 * sizeof(__m128i))), xmm1[6]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (4 * sizeof(__m128i))), xmm1[1]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (5 * sizeof(__m128i))), xmm1[5]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (6 * sizeof(__m128i))), xmm1[3]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (7 * sizeof(__m128i))), xmm1[7]);
}
}
/* Routine optimized for unshuffling a buffer for a type size of 16 bytes. */
static void
unshuffle16_sse2(uint8_t* const dest, const uint8_t* const src,
const size_t vectorizable_elements, const size_t total_elements)
{
static const size_t bytesoftype = 16;
size_t i;
int j;
__m128i xmm1[16], xmm2[16];
for (i = 0; i < vectorizable_elements; i += sizeof(__m128i)) {
/* Load 16 elements (256 bytes) into 16 XMM registers. */
const uint8_t* const src_for_ith_element = src + i;
for (j = 0; j < 16; j++) {
xmm1[j] = _mm_loadu_si128((__m128i*)(src_for_ith_element + (j * total_elements)));
}
/* Shuffle bytes */
for (j = 0; j < 8; j++) {
/* Compute the low 32 bytes */
xmm2[j] = _mm_unpacklo_epi8(xmm1[j*2], xmm1[j*2+1]);
/* Compute the hi 32 bytes */
xmm2[8+j] = _mm_unpackhi_epi8(xmm1[j*2], xmm1[j*2+1]);
}
/* Shuffle 2-byte words */
for (j = 0; j < 8; j++) {
/* Compute the low 32 bytes */
xmm1[j] = _mm_unpacklo_epi16(xmm2[j*2], xmm2[j*2+1]);
/* Compute the hi 32 bytes */
xmm1[8+j] = _mm_unpackhi_epi16(xmm2[j*2], xmm2[j*2+1]);
}
/* Shuffle 4-byte dwords */
for (j = 0; j < 8; j++) {
/* Compute the low 32 bytes */
xmm2[j] = _mm_unpacklo_epi32(xmm1[j*2], xmm1[j*2+1]);
/* Compute the hi 32 bytes */
xmm2[8+j] = _mm_unpackhi_epi32(xmm1[j*2], xmm1[j*2+1]);
}
/* Shuffle 8-byte qwords */
for (j = 0; j < 8; j++) {
/* Compute the low 32 bytes */
xmm1[j] = _mm_unpacklo_epi64(xmm2[j*2], xmm2[j*2+1]);
/* Compute the hi 32 bytes */
xmm1[8+j] = _mm_unpackhi_epi64(xmm2[j*2], xmm2[j*2+1]);
}
/* Store the result vectors in proper order */
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (0 * sizeof(__m128i))), xmm1[0]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (1 * sizeof(__m128i))), xmm1[8]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (2 * sizeof(__m128i))), xmm1[4]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (3 * sizeof(__m128i))), xmm1[12]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (4 * sizeof(__m128i))), xmm1[2]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (5 * sizeof(__m128i))), xmm1[10]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (6 * sizeof(__m128i))), xmm1[6]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (7 * sizeof(__m128i))), xmm1[14]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (8 * sizeof(__m128i))), xmm1[1]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (9 * sizeof(__m128i))), xmm1[9]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (10 * sizeof(__m128i))), xmm1[5]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (11 * sizeof(__m128i))), xmm1[13]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (12 * sizeof(__m128i))), xmm1[3]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (13 * sizeof(__m128i))), xmm1[11]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (14 * sizeof(__m128i))), xmm1[7]);
_mm_storeu_si128((__m128i*)(dest + (i * bytesoftype) + (15 * sizeof(__m128i))), xmm1[15]);
}
}
/* Routine optimized for unshuffling a buffer for a type size larger than 16 bytes. */
static void
unshuffle16_tiled_sse2(uint8_t* const dest, const uint8_t* const orig,
const size_t vectorizable_elements, const size_t total_elements, const size_t bytesoftype)
{
size_t i;
const size_t vecs_per_el_rem = bytesoftype % sizeof(__m128i);
int j;
uint8_t* dest_with_offset;
__m128i xmm1[16], xmm2[16];
/* The unshuffle loops are inverted (compared to shuffle_tiled16_sse2)
to optimize cache utilization. */
size_t offset_into_type;
for (offset_into_type = 0; offset_into_type < bytesoftype;
offset_into_type += (offset_into_type == 0 && vecs_per_el_rem > 0 ? vecs_per_el_rem : sizeof(__m128i))) {
for (i = 0; i < vectorizable_elements; i += sizeof(__m128i)) {
/* Load the first 128 bytes in 16 XMM registers */
const uint8_t* const src_for_ith_element = orig + i;
for (j = 0; j < 16; j++) {
xmm1[j] = _mm_loadu_si128((__m128i*)(src_for_ith_element + (total_elements * (offset_into_type + j))));
}
/* Shuffle bytes */
for (j = 0; j < 8; j++) {
/* Compute the low 32 bytes */
xmm2[j] = _mm_unpacklo_epi8(xmm1[j*2], xmm1[j*2+1]);
/* Compute the hi 32 bytes */
xmm2[8+j] = _mm_unpackhi_epi8(xmm1[j*2], xmm1[j*2+1]);
}
/* Shuffle 2-byte words */
for (j = 0; j < 8; j++) {
/* Compute the low 32 bytes */
xmm1[j] = _mm_unpacklo_epi16(xmm2[j*2], xmm2[j*2+1]);
/* Compute the hi 32 bytes */
xmm1[8+j] = _mm_unpackhi_epi16(xmm2[j*2], xmm2[j*2+1]);
}
/* Shuffle 4-byte dwords */
for (j = 0; j < 8; j++) {
/* Compute the low 32 bytes */
xmm2[j] = _mm_unpacklo_epi32(xmm1[j*2], xmm1[j*2+1]);
/* Compute the hi 32 bytes */
xmm2[8+j] = _mm_unpackhi_epi32(xmm1[j*2], xmm1[j*2+1]);
}
/* Shuffle 8-byte qwords */
for (j = 0; j < 8; j++) {
/* Compute the low 32 bytes */
xmm1[j] = _mm_unpacklo_epi64(xmm2[j*2], xmm2[j*2+1]);
/* Compute the hi 32 bytes */
xmm1[8+j] = _mm_unpackhi_epi64(xmm2[j*2], xmm2[j*2+1]);
}
/* Store the result vectors in proper order */
dest_with_offset = dest + offset_into_type;
_mm_storeu_si128((__m128i*)(dest_with_offset + (i + 0) * bytesoftype), xmm1[0]);
_mm_storeu_si128((__m128i*)(dest_with_offset + (i + 1) * bytesoftype), xmm1[8]);
_mm_storeu_si128((__m128i*)(dest_with_offset + (i + 2) * bytesoftype), xmm1[4]);
_mm_storeu_si128((__m128i*)(dest_with_offset + (i + 3) * bytesoftype), xmm1[12]);
_mm_storeu_si128((__m128i*)(dest_with_offset + (i + 4) * bytesoftype), xmm1[2]);
_mm_storeu_si128((__m128i*)(dest_with_offset + (i + 5) * bytesoftype), xmm1[10]);
_mm_storeu_si128((__m128i*)(dest_with_offset + (i + 6) * bytesoftype), xmm1[6]);
_mm_storeu_si128((__m128i*)(dest_with_offset + (i + 7) * bytesoftype), xmm1[14]);
_mm_storeu_si128((__m128i*)(dest_with_offset + (i + 8) * bytesoftype), xmm1[1]);
_mm_storeu_si128((__m128i*)(dest_with_offset + (i + 9) * bytesoftype), xmm1[9]);
_mm_storeu_si128((__m128i*)(dest_with_offset + (i + 10) * bytesoftype), xmm1[5]);
_mm_storeu_si128((__m128i*)(dest_with_offset + (i + 11) * bytesoftype), xmm1[13]);
_mm_storeu_si128((__m128i*)(dest_with_offset + (i + 12) * bytesoftype), xmm1[3]);
_mm_storeu_si128((__m128i*)(dest_with_offset + (i + 13) * bytesoftype), xmm1[11]);
_mm_storeu_si128((__m128i*)(dest_with_offset + (i + 14) * bytesoftype), xmm1[7]);
_mm_storeu_si128((__m128i*)(dest_with_offset + (i + 15) * bytesoftype), xmm1[15]);
}
}
}
/* Shuffle a block. This can never fail. */
void
blosc_internal_shuffle_sse2(const size_t bytesoftype, const size_t blocksize,
const uint8_t* const _src, uint8_t* const _dest) {
const size_t vectorized_chunk_size = bytesoftype * sizeof(__m128i);
/* If the blocksize is not a multiple of both the typesize and
the vector size, round the blocksize down to the next value
which is a multiple of both. The vectorized shuffle can be
used for that portion of the data, and the naive implementation
can be used for the remaining portion. */
const size_t vectorizable_bytes = blocksize - (blocksize % vectorized_chunk_size);
const size_t vectorizable_elements = vectorizable_bytes / bytesoftype;
const size_t total_elements = blocksize / bytesoftype;
/* If the block size is too small to be vectorized,
use the generic implementation. */
if (blocksize < vectorized_chunk_size) {
blosc_internal_shuffle_generic(bytesoftype, blocksize, _src, _dest);
return;
}
/* Optimized shuffle implementations */
switch (bytesoftype)
{
case 2:
shuffle2_sse2(_dest, _src, vectorizable_elements, total_elements);
break;
case 4:
shuffle4_sse2(_dest, _src, vectorizable_elements, total_elements);
break;
case 8:
shuffle8_sse2(_dest, _src, vectorizable_elements, total_elements);
break;
case 16:
shuffle16_sse2(_dest, _src, vectorizable_elements, total_elements);
break;
default:
if (bytesoftype > sizeof(__m128i)) {
shuffle16_tiled_sse2(_dest, _src, vectorizable_elements, total_elements, bytesoftype);
}
else {
/* Non-optimized shuffle */
blosc_internal_shuffle_generic(bytesoftype, blocksize, _src, _dest);
/* The non-optimized function covers the whole buffer,
so we're done processing here. */
return;
}
}
/* If the buffer had any bytes at the end which couldn't be handled
by the vectorized implementations, use the non-optimized version
to finish them up. */
if (vectorizable_bytes < blocksize) {
shuffle_generic_inline(bytesoftype, vectorizable_bytes, blocksize, _src, _dest);
}
}
/* Unshuffle a block. This can never fail. */
void
blosc_internal_unshuffle_sse2(const size_t bytesoftype, const size_t blocksize,
const uint8_t* const _src, uint8_t* const _dest) {
const size_t vectorized_chunk_size = bytesoftype * sizeof(__m128i);
/* If the blocksize is not a multiple of both the typesize and
the vector size, round the blocksize down to the next value
which is a multiple of both. The vectorized unshuffle can be
used for that portion of the data, and the naive implementation
can be used for the remaining portion. */
const size_t vectorizable_bytes = blocksize - (blocksize % vectorized_chunk_size);
const size_t vectorizable_elements = vectorizable_bytes / bytesoftype;
const size_t total_elements = blocksize / bytesoftype;
/* If the block size is too small to be vectorized,
use the generic implementation. */
if (blocksize < vectorized_chunk_size) {
blosc_internal_unshuffle_generic(bytesoftype, blocksize, _src, _dest);
return;
}
/* Optimized unshuffle implementations */
switch (bytesoftype)
{
case 2:
unshuffle2_sse2(_dest, _src, vectorizable_elements, total_elements);
break;
case 4:
unshuffle4_sse2(_dest, _src, vectorizable_elements, total_elements);
break;
case 8:
unshuffle8_sse2(_dest, _src, vectorizable_elements, total_elements);
break;
case 16:
unshuffle16_sse2(_dest, _src, vectorizable_elements, total_elements);
break;
default:
if (bytesoftype > sizeof(__m128i)) {
unshuffle16_tiled_sse2(_dest, _src, vectorizable_elements, total_elements, bytesoftype);
}
else {
/* Non-optimized unshuffle */
blosc_internal_unshuffle_generic(bytesoftype, blocksize, _src, _dest);
/* The non-optimized function covers the whole buffer,
so we're done processing here. */
return;
}
}
/* If the buffer had any bytes at the end which couldn't be handled
by the vectorized implementations, use the non-optimized version
to finish them up. */
if (vectorizable_bytes < blocksize) {
unshuffle_generic_inline(bytesoftype, vectorizable_bytes, blocksize, _src, _dest);
}
}
#endif /* !defined(__SSE2__) */
|