1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
/************************************************************************
This random number generator originally appeared in "Toward a Universal
Random Number Generator" by George Marsaglia and Arif Zaman.
Florida State University Report: FSU-SCRI-87-50 (1987)
It was later modified by F. James and published in "A Review of Pseudo-
random Number Generators"
Converted from FORTRAN to C by Phil Linttell, James F. Hickling
Management Consultants Ltd, Aug. 14, 1989.
THIS IS THE BEST KNOWN RANDOM NUMBER GENERATOR AVAILABLE.
(However, a newly discovered technique can yield
a period of 10^600. But that is still in the development stage.)
It passes ALL of the tests for random number generators and has a period
of 2^144, is completely portable (gives bit identical results on all
machines with at least 24-bit mantissas in the floating point
representation).
The algorithm is a combination of a Fibonacci sequence (with lags of 97
and 33, and operation "subtraction plus one, modulo one") and an
"arithmetic sequence" (using subtraction).
On a Vax 11/780, this random number generator can produce a number in
13 microseconds.
************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define TRUE 1
#define FALSE 0
float u[97], c, cd, cm;
int i97, j97, test;
int rmarin(int ij, int kl);
int ranmar(float rvec[], int len);
int main()
{
float temp[100];
int i;
int ij, kl, len;
/*These are the seeds needed to produce the test case results*/
ij = 1802;
kl = 9373;
/*Do the initialization*/
if (1 == rmarin(ij,kl))
return 1;
/*Generate 20000 random numbers*/
len = 100;
for ( i=0; i<=199 ; i++)
if (1 == ranmar(temp, len))
return 1;
/*If the random number generator is working properly,
the next six random numbers should be:
6533892.0 14220222.0 7275067.0
6172232.0 8354498.0 10633180.0
*/
len = 6;
if (1 == ranmar(temp, len))
return 1;
for ( i=0; i<=5; i++)
printf("%12.1f\n",4096.0*4096.0*temp[i]);
return 0;
}
/************************************************************************
This is the initialization routine for the random number generator RANMAR()
NOTE: The seed variables can have values between: 0 <= IJ <= 31328
0 <= KL <= 30081
The random number sequences created by these two seeds are of sufficient
length to complete an entire calculation with. For example, if several
different groups are working on different parts of the same calculation,
each group could be assigned its own IJ seed. This would leave each group
with 30000 choices for the second seed. That is to say, this random
number generator can create 900 million different subsequences -- with
each subsequence having a length of approximately 10^30.
Use IJ = 1802 & KL = 9373 to test the random number generator. The
subroutine RANMAR should be used to generate 20000 random numbers.
Then display the next six random numbers generated multiplied by 4096*4096
If the random number generator is working properly, the random numbers
should be:
6533892.0 14220222.0 7275067.0
6172232.0 8354498.0 10633180.0
************************************************************************/
int rmarin(int ij, int kl)
{
float s, t;
int i, j, k, l, m;
int ii, jj;
/* Change FALSE to TRUE in the next statement to test the
random routine.*/
test = TRUE;
if ( ( ij < 0 || ij > 31328 ) ||
( kl < 0 || kl > 30081 ) )
{
printf ("RMARIN: The first random number seed must have a "
"value between 0 and 31328\n");
printf (" The second random number seed must have a "
"value between 0 and 30081");
return 1;
}
i = (int)fmod(ij/177.0, 177.0) + 2;
j = (int)fmod(ij , 177.0) + 2;
k = (int)fmod(kl/169.0, 178.0) + 1;
l = (int)fmod(kl , 169.0);
for ( ii=0; ii<=96; ii++ )
{
s = (float)0.0;
t = (float)0.5;
for ( jj=0; jj<=23; jj++ )
{
m = (int)fmod( fmod(i*j,179.0)*k , 179.0 );
i = j;
j = k;
k = m;
l = (int)fmod( 53.0*l+1.0 , 169.0 );
if ( fmod(l*m,64.0) >= 32)
s = s + t;
t = (float)(0.5 * t);
}
u[ii] = s;
}
c = (float)( 362436.0 / 16777216.0);
cd = (float)( 7654321.0 / 16777216.0);
cm = (float)(16777213.0 / 16777216.0);
i97 = 96;
j97 = 32;
test = TRUE;
return 0;
}
int ranmar(float rvec[], int len)
{
float uni;
int ivec;
if ( !test )
{
printf ("RANMAR: Call the initialization routine (RMARIN) "
"before calling RANMAR.\n");
return 1;
}
for ( ivec=0; ivec < len; ivec++)
{
uni = u[i97] - u[j97];
if ( uni < 0.0F )
uni = uni + 1.0;
u[i97] = uni;
i97--;
if ( i97 < 0 )
i97 = 96;
j97--;
if ( j97 < 0 )
j97 = 96;
c = c - cd;
if ( c < 0.0F )
c = c + cm;
uni = uni - c;
if ( uni < 0.0F )
uni = uni + 1.0;
rvec[ivec] = uni;
}
return 0;
}
/* I use the following procedure in TC to generate seeds:
The sow() procedure calculates two seeds for use with the random number
generator from the system clock. I decided how to do this myself, and
I am sure that there must be better ways to select seeds; hopefully,
however, this is good enough. The first seed is calculated from the values
for second, minute, hour, and year-day; weighted with the second most
significant and year-day least significant. The second seed weights the
values in reverse.
*/
void sow( seed1, seed2 )
int *seed1, *seed2;
{
struct tm *tm_now;
float s_sig, s_insig, maxs_sig, maxs_insig;
long secs_now;
int s, m, h, d, s1, s2;
time(&secs_now);
tm_now = localtime(&secs_now);
s = tm_now->tm_sec + 1;
m = tm_now->tm_min + 1;
h = tm_now->tm_hour + 1;
d = tm_now->tm_yday + 1;
maxs_sig = (float)(60.0 + 60.0/60.0 + 24.0/60.0/60.0 +
366.0/24.0/60.0/60.0);
maxs_insig = (float)(60.0 + 60.0*60.0 + 24.0*60.0*60.0 +
366.0*24.0*60.0*60.0);
s_sig = (float)(s + m/60.0 + h/60.0/60.0 + d/24.0/60.0/60.0);
s_insig = (float)(s + m*60.0 + h*60.0*60.0 + d*24.0*60.0*60.0);
s1 = (int)(s_sig / maxs_sig * 31328.0);
s2 = (int)(s_insig / maxs_insig * 30081.0);
*seed1 = s1;
*seed2 = s2;
}
|