1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
|
/*
SUNRISET.C - computes Sun rise/set times, start/end of twilight, and
the length of the day at any date and latitude
Written as DAYLEN.C, 1989-08-16
Modified to SUNRISET.C, 1992-12-01
(c) Paul Schlyter, 1989, 1992
Released to the public domain by Paul Schlyter, December 1992
*/
#include <stdio.h>
#include <math.h>
/* A macro to compute the number of days elapsed since 2000 Jan 0.0 */
/* (which is equal to 1999 Dec 31, 0h UT) */
#define days_since_2000_Jan_0(y,m,d) \
(367L*(y)-((7*((y)+(((m)+9)/12)))/4)+((275*(m))/9)+(d)-730530L)
/* Some conversion factors between radians and degrees */
#ifndef PI
#define PI 3.1415926535897932384
#endif
#define RADEG ( 180.0 / PI )
#define DEGRAD ( PI / 180.0 )
/* The trigonometric functions in degrees */
#define sind(x) sin((x)*DEGRAD)
#define cosd(x) cos((x)*DEGRAD)
#define tand(x) tan((x)*DEGRAD)
#define atand(x) (RADEG*atan(x))
#define asind(x) (RADEG*asin(x))
#define acosd(x) (RADEG*acos(x))
#define atan2d(y,x) (RADEG*atan2(y,x))
/* Following are some macros around the "workhorse" function __daylen__ */
/* They mainly fill in the desired values for the reference altitude */
/* below the horizon, and also selects whether this altitude should */
/* refer to the Sun's center or its upper limb. */
/* This macro computes the length of the day, from sunrise to sunset. */
/* Sunrise/set is considered to occur when the Sun's upper limb is */
/* 35 arc minutes below the horizon (this accounts for the refraction */
/* of the Earth's atmosphere). */
#define day_length(year,month,day,lon,lat) \
__daylen__( year, month, day, lon, lat, -35.0/60.0, 1 )
/* This macro computes the length of the day, including civil twilight. */
/* Civil twilight starts/ends when the Sun's center is 6 degrees below */
/* the horizon. */
#define day_civil_twilight_length(year,month,day,lon,lat) \
__daylen__( year, month, day, lon, lat, -6.0, 0 )
/* This macro computes the length of the day, incl. nautical twilight. */
/* Nautical twilight starts/ends when the Sun's center is 12 degrees */
/* below the horizon. */
#define day_nautical_twilight_length(year,month,day,lon,lat) \
__daylen__( year, month, day, lon, lat, -12.0, 0 )
/* This macro computes the length of the day, incl. astronomical twilight. */
/* Astronomical twilight starts/ends when the Sun's center is 18 degrees */
/* below the horizon. */
#define day_astronomical_twilight_length(year,month,day,lon,lat) \
__daylen__( year, month, day, lon, lat, -18.0, 0 )
/* This macro computes times for sunrise/sunset. */
/* Sunrise/set is considered to occur when the Sun's upper limb is */
/* 35 arc minutes below the horizon (this accounts for the refraction */
/* of the Earth's atmosphere). */
#define sun_rise_set(year,month,day,lon,lat,rise,set) \
__sunriset__( year, month, day, lon, lat, -35.0/60.0, 1, rise, set )
/* This macro computes the start and end times of civil twilight. */
/* Civil twilight starts/ends when the Sun's center is 6 degrees below */
/* the horizon. */
#define civil_twilight(year,month,day,lon,lat,start,end) \
__sunriset__( year, month, day, lon, lat, -6.0, 0, start, end )
/* This macro computes the start and end times of nautical twilight. */
/* Nautical twilight starts/ends when the Sun's center is 12 degrees */
/* below the horizon. */
#define nautical_twilight(year,month,day,lon,lat,start,end) \
__sunriset__( year, month, day, lon, lat, -12.0, 0, start, end )
/* This macro computes the start and end times of astronomical twilight. */
/* Astronomical twilight starts/ends when the Sun's center is 18 degrees */
/* below the horizon. */
#define astronomical_twilight(year,month,day,lon,lat,start,end) \
__sunriset__( year, month, day, lon, lat, -18.0, 0, start, end )
/* Function prototypes */
double __daylen__( int year, int month, int day, double lon, double lat,
double altit, int upper_limb );
int __sunriset__( int year, int month, int day, double lon, double lat,
double altit, int upper_limb, double *rise, double *set );
void sunpos( double d, double *lon, double *r );
void sun_RA_dec( double d, double *RA, double *dec, double *r );
double revolution( double x );
double rev180( double x );
double GMST0( double d );
/* A small test program */
void main(void)
{
int year,month,day;
double lon, lat;
double daylen, civlen, nautlen, astrlen;
double rise, set, civ_start, civ_end, naut_start, naut_end,
astr_start, astr_end;
int rs, civ, naut, astr;
printf( "Longitude (+ is east) and latitude (+ is north) : " );
scanf( "%lf %lf", &lon, &lat );
for(;;)
{
printf( "Input date ( yyyy mm dd ) (ctrl-C exits): " );
scanf( "%d %d %d", &year, &month, &day );
daylen = day_length(year,month,day,lon,lat);
civlen = day_civil_twilight_length(year,month,day,lon,lat);
nautlen = day_nautical_twilight_length(year,month,day,lon,lat);
astrlen = day_astronomical_twilight_length(year,month,day,
lon,lat);
printf( "Day length: %5.2f hours\n", daylen );
printf( "With civil twilight %5.2f hours\n", civlen );
printf( "With nautical twilight %5.2f hours\n", nautlen );
printf( "With astronomical twilight %5.2f hours\n", astrlen );
printf( "Length of twilight: civil %5.2f hours\n",
(civlen-daylen)/2.0);
printf( " nautical %5.2f hours\n",
(nautlen-daylen)/2.0);
printf( " astronomical %5.2f hours\n",
(astrlen-daylen)/2.0);
rs = sun_rise_set ( year, month, day, lon, lat,
&rise, &set );
civ = civil_twilight ( year, month, day, lon, lat,
&civ_start, &civ_end );
naut = nautical_twilight ( year, month, day, lon, lat,
&naut_start, &naut_end );
astr = astronomical_twilight( year, month, day, lon, lat,
&astr_start, &astr_end );
printf( "Sun at south %5.2fh UT\n", (rise+set)/2.0 );
switch( rs )
{
case 0:
printf( "Sun rises %5.2fh UT, sets %5.2fh UT\n",
rise, set );
break;
case +1:
printf( "Sun above horizon\n" );
break;
case -1:
printf( "Sun below horizon\n" );
break;
}
switch( civ )
{
case 0:
printf( "Civil twilight starts %5.2fh, "
"ends %5.2fh UT\n", civ_start, civ_end );
break;
case +1:
printf( "Never darker than civil twilight\n" );
break;
case -1:
printf( "Never as bright as civil twilight\n" );
break;
}
switch( naut )
{
case 0:
printf( "Nautical twilight starts %5.2fh, "
"ends %5.2fh UT\n", naut_start, naut_end );
break;
case +1:
printf( "Never darker than nautical twilight\n" );
break;
case -1:
printf( "Never as bright as nautical twilight\n" );
break;
}
switch( astr )
{
case 0:
printf( "Astronomical twilight starts %5.2fh, "
"ends %5.2fh UT\n", astr_start, astr_end );
break;
case +1:
printf( "Never darker than astronomical twilight\n" );
break;
case -1:
printf( "Never as bright as astronomical twilight\n" );
break;
}
}
}
/* The "workhorse" function for sun rise/set times */
int __sunriset__( int year, int month, int day, double lon, double lat,
double altit, int upper_limb, double *trise, double *tset )
/***************************************************************************/
/* Note: year,month,date = calendar date, 1801-2099 only. */
/* Eastern longitude positive, Western longitude negative */
/* Northern latitude positive, Southern latitude negative */
/* The longitude value IS critical in this function! */
/* altit = the altitude which the Sun should cross */
/* Set to -35/60 degrees for rise/set, -6 degrees */
/* for civil, -12 degrees for nautical and -18 */
/* degrees for astronomical twilight. */
/* upper_limb: non-zero -> upper limb, zero -> center */
/* Set to non-zero (e.g. 1) when computing rise/set */
/* times, and to zero when computing start/end of */
/* twilight. */
/* *rise = where to store the rise time */
/* *set = where to store the set time */
/* Both times are relative to the specified altitude, */
/* and thus this function can be used to comupte */
/* various twilight times, as well as rise/set times */
/* Return value: 0 = sun rises/sets this day, times stored at */
/* *trise and *tset. */
/* +1 = sun above the specified "horizon" 24 hours. */
/* *trise set to time when the sun is at south, */
/* minus 12 hours while *tset is set to the south */
/* time plus 12 hours. "Day" length = 24 hours */
/* -1 = sun is below the specified "horizon" 24 hours */
/* "Day" length = 0 hours, *trise and *tset are */
/* both set to the time when the sun is at south. */
/* */
/**********************************************************************/
{
double d, /* Days since 2000 Jan 0.0 (negative before) */
sr, /* Solar distance, astronomical units */
sRA, /* Sun's Right Ascension */
sdec, /* Sun's declination */
sradius, /* Sun's apparent radius */
t, /* Diurnal arc */
tsouth, /* Time when Sun is at south */
sidtime; /* Local sidereal time */
int rc = 0; /* Return cde from function - usually 0 */
/* Compute d of 12h local mean solar time */
d = days_since_2000_Jan_0(year,month,day) + 0.5 - lon/360.0;
/* Compute local sideral time of this moment */
sidtime = revolution( GMST0(d) + 180.0 + lon );
/* Compute Sun's RA + Decl at this moment */
sun_RA_dec( d, &sRA, &sdec, &sr );
/* Compute time when Sun is at south - in hours UT */
tsouth = 12.0 - rev180(sidtime - sRA)/15.0;
/* Compute the Sun's apparent radius, degrees */
sradius = 0.2666 / sr;
/* Do correction to upper limb, if necessary */
if ( upper_limb )
altit -= sradius;
/* Compute the diurnal arc that the Sun traverses to reach */
/* the specified altitide altit: */
{
double cost;
cost = ( sind(altit) - sind(lat) * sind(sdec) ) /
( cosd(lat) * cosd(sdec) );
if ( cost >= 1.0 )
rc = -1, t = 0.0; /* Sun always below altit */
else if ( cost <= -1.0 )
rc = +1, t = 12.0; /* Sun always above altit */
else
t = acosd(cost)/15.0; /* The diurnal arc, hours */
}
/* Store rise and set times - in hours UT */
*trise = tsouth - t;
*tset = tsouth + t;
return rc;
} /* __sunriset__ */
/* The "workhorse" function */
double __daylen__( int year, int month, int day, double lon, double lat,
double altit, int upper_limb )
/**********************************************************************/
/* Note: year,month,date = calendar date, 1801-2099 only. */
/* Eastern longitude positive, Western longitude negative */
/* Northern latitude positive, Southern latitude negative */
/* The longitude value is not critical. Set it to the correct */
/* longitude if you're picky, otherwise set to to, say, 0.0 */
/* The latitude however IS critical - be sure to get it correct */
/* altit = the altitude which the Sun should cross */
/* Set to -35/60 degrees for rise/set, -6 degrees */
/* for civil, -12 degrees for nautical and -18 */
/* degrees for astronomical twilight. */
/* upper_limb: non-zero -> upper limb, zero -> center */
/* Set to non-zero (e.g. 1) when computing day length */
/* and to zero when computing day+twilight length. */
/**********************************************************************/
{
double d, /* Days since 2000 Jan 0.0 (negative before) */
obl_ecl, /* Obliquity (inclination) of Earth's axis */
sr, /* Solar distance, astronomical units */
slon, /* True solar longitude */
sin_sdecl, /* Sine of Sun's declination */
cos_sdecl, /* Cosine of Sun's declination */
sradius, /* Sun's apparent radius */
t; /* Diurnal arc */
/* Compute d of 12h local mean solar time */
d = days_since_2000_Jan_0(year,month,day) + 0.5 - lon/360.0;
/* Compute obliquity of ecliptic (inclination of Earth's axis) */
obl_ecl = 23.4393 - 3.563E-7 * d;
/* Compute Sun's position */
sunpos( d, &slon, &sr );
/* Compute sine and cosine of Sun's declination */
sin_sdecl = sind(obl_ecl) * sind(slon);
cos_sdecl = sqrt( 1.0 - sin_sdecl * sin_sdecl );
/* Compute the Sun's apparent radius, degrees */
sradius = 0.2666 / sr;
/* Do correction to upper limb, if necessary */
if ( upper_limb )
altit -= sradius;
/* Compute the diurnal arc that the Sun traverses to reach */
/* the specified altitide altit: */
{
double cost;
cost = ( sind(altit) - sind(lat) * sin_sdecl ) /
( cosd(lat) * cos_sdecl );
if ( cost >= 1.0 )
t = 0.0; /* Sun always below altit */
else if ( cost <= -1.0 )
t = 24.0; /* Sun always above altit */
else t = (2.0/15.0) * acosd(cost); /* The diurnal arc, hours */
}
return t;
} /* __daylen__ */
/* This function computes the Sun's position at any instant */
void sunpos( double d, double *lon, double *r )
/******************************************************/
/* Computes the Sun's ecliptic longitude and distance */
/* at an instant given in d, number of days since */
/* 2000 Jan 0.0. The Sun's ecliptic latitude is not */
/* computed, since it's always very near 0. */
/******************************************************/
{
double M, /* Mean anomaly of the Sun */
w, /* Mean longitude of perihelion */
/* Note: Sun's mean longitude = M + w */
e, /* Eccentricity of Earth's orbit */
E, /* Eccentric anomaly */
x, y, /* x, y coordinates in orbit */
v; /* True anomaly */
/* Compute mean elements */
M = revolution( 356.0470 + 0.9856002585 * d );
w = 282.9404 + 4.70935E-5 * d;
e = 0.016709 - 1.151E-9 * d;
/* Compute true longitude and radius vector */
E = M + e * RADEG * sind(M) * ( 1.0 + e * cosd(M) );
x = cosd(E) - e;
y = sqrt( 1.0 - e*e ) * sind(E);
*r = sqrt( x*x + y*y ); /* Solar distance */
v = atan2d( y, x ); /* True anomaly */
*lon = v + w; /* True solar longitude */
if ( *lon >= 360.0 )
*lon -= 360.0; /* Make it 0..360 degrees */
}
void sun_RA_dec( double d, double *RA, double *dec, double *r )
{
double lon, obl_ecl, x, y, z;
/* Compute Sun's ecliptical coordinates */
sunpos( d, &lon, r );
/* Compute ecliptic rectangular coordinates (z=0) */
x = *r * cosd(lon);
y = *r * sind(lon);
/* Compute obliquity of ecliptic (inclination of Earth's axis) */
obl_ecl = 23.4393 - 3.563E-7 * d;
/* Convert to equatorial rectangular coordinates - x is uchanged */
z = y * sind(obl_ecl);
y = y * cosd(obl_ecl);
/* Convert to spherical coordinates */
*RA = atan2d( y, x );
*dec = atan2d( z, sqrt(x*x + y*y) );
} /* sun_RA_dec */
/******************************************************************/
/* This function reduces any angle to within the first revolution */
/* by subtracting or adding even multiples of 360.0 until the */
/* result is >= 0.0 and < 360.0 */
/******************************************************************/
#define INV360 ( 1.0 / 360.0 )
double revolution( double x )
/*****************************************/
/* Reduce angle to within 0..360 degrees */
/*****************************************/
{
return( x - 360.0 * floor( x * INV360 ) );
} /* revolution */
double rev180( double x )
/*********************************************/
/* Reduce angle to within +180..+180 degrees */
/*********************************************/
{
return( x - 360.0 * floor( x * INV360 + 0.5 ) );
} /* revolution */
/*******************************************************************/
/* This function computes GMST0, the Greenwhich Mean Sidereal Time */
/* at 0h UT (i.e. the sidereal time at the Greenwhich meridian at */
/* 0h UT). GMST is then the sidereal time at Greenwich at any */
/* time of the day. I've generelized GMST0 as well, and define it */
/* as: GMST0 = GMST - UT -- this allows GMST0 to be computed at */
/* other times than 0h UT as well. While this sounds somewhat */
/* contradictory, it is very practical: instead of computing */
/* GMST like: */
/* */
/* GMST = (GMST0) + UT * (366.2422/365.2422) */
/* */
/* where (GMST0) is the GMST last time UT was 0 hours, one simply */
/* computes: */
/* */
/* GMST = GMST0 + UT */
/* */
/* where GMST0 is the GMST "at 0h UT" but at the current moment! */
/* Defined in this way, GMST0 will increase with about 4 min a */
/* day. It also happens that GMST0 (in degrees, 1 hr = 15 degr) */
/* is equal to the Sun's mean longitude plus/minus 180 degrees! */
/* (if we neglect aberration, which amounts to 20 seconds of arc */
/* or 1.33 seconds of time) */
/* */
/*******************************************************************/
double GMST0( double d )
{
double sidtim0;
/* Sidtime at 0h UT = L (Sun's mean longitude) + 180.0 degr */
/* L = M + w, as defined in sunpos(). Since I'm too lazy to */
/* add these numbers, I'll let the C compiler do it for me. */
/* Any decent C compiler will add the constants at compile */
/* time, imposing no runtime or code overhead. */
sidtim0 = revolution( ( 180.0 + 356.0470 + 282.9404 ) +
( 0.9856002585 + 4.70935E-5 ) * d );
return sidtim0;
} /* GMST0 */
|