1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
/* Calculate Madelung constant and leading term in correction for
* charged cells */
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include "c2xsf.h"
double madelung(struct unit_cell *c){
double M, M_real,M_recip,M_self,M_charged;
double E_real,E_recip,E_self,E_charged;
double dist,disp[3];
double sigma;
int i,j,k,ii,jj,kk,m;
sigma=M_PI*pow(0.7/(c->vol*c->vol),1.0/3.0);
fprintf(stderr,"sigma=%f\n",sigma);
/* Real space sum */
M_real=0.0;
/* erfc(x) is approx exp(-x*x),
* we don't care about terms smaller than 1e-16,
* which is exp(-6*6) */
ii=1+6.0/sqrt(sigma)/sqrt(vmod2(c->basis[0]));
jj=1+6.0/sqrt(sigma)/sqrt(vmod2(c->basis[1]));
kk=1+6.0/sqrt(sigma)/sqrt(vmod2(c->basis[2]));
if (debug>1)
fprintf(stderr,"Real space Ewald grid=%dx%dx%d\n",2*ii+1,2*jj+1,2*kk+1);
for(i=-ii;i<=ii;i++){
for(j=-jj;j<=jj;j++){
for(k=-kk;k<=kk;k++){
if ((i==0)&&(j==0)&&(k==0)) continue;
for(m=0;m<3;m++) disp[m]=c->basis[0][m]*i+
c->basis[1][m]*j+c->basis[2][m]*k;
dist=sqrt(vmod2(disp));
M_real+=(1.0/dist)*erfc(dist*sqrt(sigma));
}
}
}
M_self=-2.0*sqrt(sigma/M_PI);
E_real=M_real/(4*M_PI*EPS0);
E_self=M_self/(4*M_PI*EPS0);
ii=1+sqrt(4*sigma)/sqrt(vmod2(c->recip[0]));
jj=1+sqrt(4*sigma)/sqrt(vmod2(c->recip[1]));
kk=1+sqrt(4*sigma)/sqrt(vmod2(c->recip[2]));
if (debug>1)
fprintf(stderr,"Rec space Ewald grid=%dx%dx%d\n",2*ii+1,2*jj+1,2*kk+1);
M_recip=0.0;
for(i=-ii;i<=ii;i++){
for(j=-jj;j<=jj;j++){
for(k=-kk;k<=kk;k++){
if ((i==0)&&(j==0)&&(k==0)) continue;
for(m=0;m<3;m++) disp[m]=c->recip[0][m]*i+
c->recip[1][m]*j+c->recip[2][m]*k;
dist=4*M_PI*M_PI*vmod2(disp);
M_recip+=exp(-0.25*dist/sigma)/dist;
}
}
}
M_recip*=4*M_PI/c->vol;
E_recip=M_recip/(4*M_PI*EPS0);
M_charged=-M_PI/(c->vol*sigma);
E_charged=M_charged/(4*M_PI*EPS0);
if(debug>2){
/* For comparison with pymatgen */
fprintf(stderr,"Volume: %f\n",c->vol);
fprintf(stderr,"Real space: %f\n",E_real);
fprintf(stderr,"Recip space: %f\n",E_recip);
fprintf(stderr,"Self: %f\n",E_self);
fprintf(stderr,"Charged: %f\n",E_charged);
fprintf(stderr,"Total: %f\n",E_real+E_recip+E_self+E_charged);
}
M=M_real+M_recip+M_self+M_charged;
M=-M*sqrt(vmod2(c->basis[0]));
if (debug) fprintf(stderr,"Madelung constant of lattice: %f\n",M);
return M;
}
double quadrupole(struct unit_cell *c, struct contents *m,
struct grid *g, double *ctr){
double q,Q_e,Q_i,vec[3],*ptr;
int i,ii[3],j;
double rvec[3],disp2,scale;
scale=c->vol/(g->size[0]*g->size[1]*g->size[2]);
Q_e=Q_i=0;
q=0;
ptr=g->data;
if (!ptr) return 0;
for(i=0;i<m->n;i++){
for(j=0;j<3;j++){
rvec[j]=m->atoms[i].frac[j]-ctr[j];
rvec[j]=fmod(rvec[j]+0.5,1.0);
if (rvec[j]<0) rvec[j]+=1;
rvec[j]-=0.5;
}
for(j=0;j<3;j++)
vec[j]=rvec[0]*c->basis[0][j]+
rvec[1]*c->basis[1][j]+rvec[2]*c->basis[2][j];
disp2=vmod2(vec);
Q_i+=m->atoms[i].chg*disp2;
}
if (debug) fprintf(stderr,"Ionic quadrupole: Q %f eA^2\n",Q_i);
for(ii[0]=0;ii[0]<g->size[0];ii[0]++){
for(ii[1]=0;ii[1]<g->size[1];ii[1]++){
for(ii[2]=0;ii[2]<g->size[2];ii[2]++){
for(i=0;i<3;i++){
rvec[i]=(double)ii[i]/g->size[i]-ctr[i]; /* BUG!!! */
/* force disp to range 0.5<=disp<=0.5 */
rvec[i]=fmod(rvec[i]+0.5,1.0);
if (rvec[i]<0) rvec[i]+=1;
rvec[i]-=0.5;
}
for(i=0;i<3;i++)
vec[i]=rvec[0]*c->basis[0][i]+
rvec[1]*c->basis[1][i]+rvec[2]*c->basis[2][i];
disp2=vmod2(vec);
q-=scale*(*ptr);
Q_e-=scale*(*ptr)*disp2;
ptr++;
}
}
}
if (debug) fprintf(stderr,"Electric quadrupole: q=%fe, Q %f eA^2\n",q,Q_e);
if (debug) fprintf(stderr,"Total quadrupole: %f eA^2\n",Q_e+Q_i);
return Q_e+Q_i;
}
double quadrupole_ii(struct unit_cell *c, struct contents *m,
struct grid *g, double *ctr, int dir){
double q,Q_e,Q_i,vec[3],*ptr;
int i,ii[3],j;
double rvec[3],disp2,scale;
scale=c->vol/(g->size[0]*g->size[1]*g->size[2]);
Q_e=Q_i=0;
q=0;
ptr=g->data;
if (!ptr) return 0;
for(i=0;i<m->n;i++){
for(j=0;j<3;j++){
rvec[j]=m->atoms[i].frac[j]-ctr[j];
rvec[j]=fmod(rvec[j]+0.5,1.0);
if (rvec[j]<0) rvec[j]+=1;
rvec[j]-=0.5;
}
for(j=0;j<3;j++)
vec[j]=rvec[0]*c->basis[0][j]+
rvec[1]*c->basis[1][j]+rvec[2]*c->basis[2][j];
disp2=vec[dir]*vec[dir];
Q_i+=m->atoms[i].chg*disp2;
}
if (debug) fprintf(stderr,"Ionic quadrupole_%c%c: Q %f eA^2\n",
dir+'a',dir+'a',Q_i);
for(ii[0]=0;ii[0]<g->size[0];ii[0]++){
for(ii[1]=0;ii[1]<g->size[1];ii[1]++){
for(ii[2]=0;ii[2]<g->size[2];ii[2]++){
for(i=0;i<3;i++){
rvec[i]=(double)ii[i]/g->size[i]-ctr[i]; /* BUG!!! */
/* force disp to range 0.5<=disp<=0.5 */
rvec[i]=fmod(rvec[i]+0.5,1.0);
if (rvec[i]<0) rvec[i]+=1;
rvec[i]-=0.5;
}
for(i=0;i<3;i++)
vec[i]=rvec[0]*c->basis[0][i]+
rvec[1]*c->basis[1][i]+rvec[2]*c->basis[2][i];
disp2=vec[dir]*vec[dir];
q-=scale*(*ptr);
Q_e-=scale*(*ptr)*disp2;
ptr++;
}
}
}
if (debug) fprintf(stderr,"Electric quadrupole_%c%c: q=%fe, Q %f eA^2\n",
dir+'a',dir+'a',q,Q_e);
if (debug) fprintf(stderr,"Total quadrupole_%c%c: %f eA^2\n",
dir+'a',dir+'a',Q_e+Q_i);
return Q_e+Q_i;
}
void charge_corr(struct unit_cell *c, struct contents *m,
struct grid *g, struct es *elect){
double charge,alpha,energy,quad,ctr[3];
double i_charge,e_charge;
double abc[6],a,dpole[3],dpole_frac[3];
int i,j,n_grid_points,dir;
if ((!g)||(!g->data)){
fprintf(stderr,
"Unable to correct for charge as no electron density read\n");
return;
}
if (elect->charge) charge=*elect->charge;
else{ /* Need to calculate charge in cell */
i_charge=0;
for(i=0;i<m->n;i++) i_charge+=m->atoms[i].chg;
if (!g->data){
fprintf(stderr,"Cannot calculate charge correction as net charge "
"not available\nDid you mean to read a density too?");
return;
}
e_charge=0;
n_grid_points=g->size[0]*g->size[1]*g->size[2];
for(i=0;i<n_grid_points;i++) e_charge+=g->data[i];
e_charge*=c->vol/n_grid_points;
if (debug>1) fprintf(stderr,"Ionic charge: %f\nElectronic charge: %f\n",
i_charge,e_charge);
charge=i_charge-e_charge;
}
if (*elect->dip_corr_dir=='m'){ /* 3D to 0D correction */
alpha=madelung(c);
energy=charge*charge*alpha/(8*M_PI*EPS0*sqrt(vmod2(c->basis[0])));
if (debug) fprintf(stderr,"Total charge: %f\n",charge);
fprintf(stderr,"Madelung energy correction: %12.6f eV\n",energy);
if (elect->energy){
fprintf(stderr,"Original energy: %12.6f eV\n",*elect->energy);
fprintf(stderr,"Corrected energy: %12.6f eV\n",
*elect->energy+energy);
}
ctr[0]=ctr[1]=ctr[2]=0.5;
cart2abc(c,NULL,abc,NULL,0);
dipole_calc(c,m,g,ctr,dpole);
for(i=0;i<3;i++){
if (fabs(dpole[i])>fabs(charge*abc[i])){
fprintf(stderr,"Charge too small / dipole too large for next term\n");
return;
}
dpole_frac[i]=0;
for(j=0;j<3;j++)
dpole_frac[i]+=dpole[i]*c->recip[i][j];
ctr[i]=ctr[i]+dpole_frac[i]/charge;
}
quad=quadrupole(c,m,g,ctr);
fprintf(stderr,"Quadrupole correction: %.6f eV\n",
charge*quad/(6*EPS0*c->vol));
fprintf(stderr,"Final corrected energy: %.6f eV\n",
*elect->energy+energy-charge*quad/(6*EPS0*c->vol));
}
else{ /* 3D to 2D slab correction */
cart2abc(c,NULL,abc,NULL,0);
dir=*elect->dip_corr_dir-'a';
for(i=0;i<3;i++){
if ((!aeq(abc[3+i],90))&&(dir!=i)){
fprintf(stderr,"Warning: charge correction axis not perpendicular "
"to other axes\n");
}
}
a=abc[(dir+1)%3]*abc[(dir+2)%3]*sin(abc[3+dir]*M_PI/180);
energy=-charge*charge*abc[dir]/(24*EPS0*a);
if (debug) fprintf(stderr,"Total charge: %f\n",charge);
fprintf(stderr,"Charged slab correction: %12.6f eV\n",energy);
if (elect->energy){
fprintf(stderr,"Original energy: %12.6f eV\n",*elect->energy);
fprintf(stderr,"Corrected energy: %12.6f eV\n",
*elect->energy+energy);
ctr[0]=ctr[1]=ctr[2]=0.5;
dipole_calc(c,m,g,ctr,dpole);
if (fabs(dpole[dir])>fabs(charge*abc[dir])){
fprintf(stderr,"Charge too small / dipole too large for next term\n");
return;
}
ctr[dir]=ctr[dir]+dpole[dir]/(charge*abc[dir]);
if (debug) fprintf(stderr,"Centre for quadrupole: (%f,%f,%f)\n",
ctr[0],ctr[1],ctr[2]);
quad=quadrupole_ii(c,m,g,ctr,dir);
quad=-quad*charge/(2*EPS0*c->vol);
fprintf(stderr,"Quadrupole correction: %12.6f eV\n",quad);
fprintf(stderr,"Final corrected energy: %12.6f eV\n",
*elect->energy+energy+quad);
}
}
}
|