File: interpolate.c

package info (click to toggle)
c2x 2.35a%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,020 kB
  • sloc: ansic: 19,816; makefile: 54; sh: 1
file content (272 lines) | stat: -rw-r--r-- 6,347 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/* FFT interpolation of 3D real grid data */

/* Copyright (c) 2014 MJ Rutter 
 * 
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3
 * of the Licence, or (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see http://www.gnu.org/licenses/
 */ 

#include<stdio.h>
#include<stdlib.h>
#include<math.h>

#include "c2xsf.h"

void fft3d(double *c, int *ngptar, int dir);
void pad_recip(double *o, int fft[3], double **ptr, int nfft[3]);

/* Do FFT interpolation of real space real data */
void interpolate3d(struct grid *old_grid, struct grid *new_grid){
  int old_size,new_size,ffft[3],fft[3],nfft[3];
  int i;
  double *o,*n,scale;

  /* A new grid dimension of zero means leave as was */
  for(i=0;i<3;i++)
    if (new_grid->size[i]==0) new_grid->size[i]=old_grid->size[i];

  for(i=0;i<3;i++) fft[i]=old_grid->size[i];
  for(i=0;i<3;i++) nfft[i]=new_grid->size[i];

  if (debug>1)
    fprintf(stderr,"Interpolating real data from %dx%dx%d to %dx%dx%d\n",
            fft[0],fft[1],fft[2],nfft[0],nfft[1],nfft[2]);

  old_size=fft[0]*fft[1]*fft[2];
  new_size=nfft[0]*nfft[1]*nfft[2];
  new_grid->data=malloc(new_size*sizeof(double));
  if (!new_grid->data) error_exit("Malloc error for final grid in interpolate");

  if((fft[0]==nfft[0])&&(fft[1]==nfft[1])&&(fft[2]==nfft[2])){
    if (debug>1) fprintf(stderr,"Null interpolation reduced to copy.\n");
    for(i=0;i<old_size;i++) new_grid->data[i]=old_grid->data[i];
    return;
  }

  /* Pad real data to complex */

  o=malloc(2*old_size*sizeof(double));
  if (!o) error_exit("Malloc error for first grid in interpolate");

  for(i=0;i<old_size;i++){
    o[2*i]=old_grid->data[i];
    o[2*i+1]=0.0;
  }

  /* FFT to reciprocal space */

  /* A FORTRAN data order ... */

  ffft[0]=fft[2];
  ffft[1]=fft[1];
  ffft[2]=fft[0];

  if (debug>1) fprintf(stderr,"first FFT in interpolate\n");

  fft3d(o,ffft,-1);

  /* Pad onto interpolated reciprocal space grid */

  /* Assume all bits zero is a double zero */

  if (debug>1) fprintf(stderr,"padding in interpolate\n");

  pad_recip(o,fft,&n,nfft);

  free(o);

  /* FFT back to real space */

  if (debug>1) fprintf(stderr,"second FFT in interpolate\n");

  ffft[0]=nfft[2];
  ffft[1]=nfft[1];
  ffft[2]=nfft[0];

  fft3d(n,ffft,1);

  if (debug>1) fprintf(stderr,"end of second FFT in interpolate\n");

  /* Convert back to real and rescale */

  scale=1.0/old_size;

  for(i=0;i<new_size;i++)
    new_grid->data[i]=scale*n[2*i];

  free(n);

}


double interpolate0d(struct grid *gptr,double x_in[3]){
  int i,j,n;
  int ii,jj,kk;
  int ny,nz;
  int v[2][2][2][3];
  double c1[2][2],c2[2];
  double t,z,x[3];

  ny=gptr->size[1];
  nz=gptr->size[2];

  for(i=0;i<3;i++){
    x_in[i]=fmod(x_in[i],1.0);
    if (x_in[i]<0) x_in[i]++;
  }
  
  for(i=0;i<3;i++) x[i]=x_in[i]*gptr->size[i];

  for(i=0;i<3;i++) {
    v[0][0][0][i]=(int)floor(x[i])%gptr->size[i];
    if (v[0][0][0][i]<0) v[0][0][0][i]+=gptr->size[i];
    x[i]-=floor(x[i]);
  }

  /* Fill in x co-ords of all cube vertices */

  for(i=0;i<2;i++)
    for(j=0;j<2;j++){
      v[0][i][j][0]=v[0][0][0][0];
      n=(v[0][0][0][0]+1)%gptr->size[0];
      v[1][i][j][0]=n;
    }

  /* y co-ords */

  for(i=0;i<2;i++)
    for(j=0;j<2;j++){
      v[i][0][j][1]=v[0][0][0][1];
      n=(v[0][0][0][1]+1)%gptr->size[1];
      v[i][1][j][1]=n;
    }

  /* z co-ords */

  for(i=0;i<2;i++)
    for(j=0;j<2;j++){
      v[i][j][0][2]=v[0][0][0][2];
      n=(v[0][0][0][2]+1)%gptr->size[2];
      v[i][j][1][2]=n;
    }

  /* First step of interpolation: push out z */

  for(i=0;i<2;i++)
    for(j=0;j<2;j++){
      ii=v[i][j][0][0];
      jj=v[i][j][0][1];
      kk=v[i][j][0][2];
      t=(1-x[2])*gptr->data[kk+nz*(jj+ny*ii)];
      ii=v[i][j][1][0];
      jj=v[i][j][1][1];
      kk=v[i][j][1][2];
      t+=x[2]*gptr->data[kk+nz*(jj+ny*ii)];
      c1[i][j]=t;
    }

  /* Second step, push out y */

  for(i=0;i<2;i++){
    t=(1-x[1])*c1[i][0];
    t+=x[1]*c1[i][1];
    c2[i]=t;
  }

  z=(1-x[0])*c2[0]+x[0]*c2[1];

  return(z);
      
}

void interpolate1d(struct grid *gptr, double st[3], double end[3],
                   int npts, double *out){
  int i,j;
  double x[3];

  for(i=0;i<npts;i++){
    for(j=0;j<3;j++)
      x[j]=st[j]+(i/(double)(npts-1))*(end[j]-st[j]);
    out[i]=interpolate0d(gptr,x);
  }
}

/* Pad into array assumed to be zeroed */
/* Deal with case of target being both larger and smaller than source */
void pad_recip(double *o, int fft[3], double **nptr, int nfft[3]){
  int i,j,k,ii,jj,kk,nii,njj,nkk;
  int imin,imax,jmin,jmax,kmin,kmax;
  int ind,nind;
  double *n;

  for(i=0;i<3;i++)
    if (nfft[i]==0) nfft[i]=fft[i];

  for(i=0;i<3;i++)
    if (nfft[i]<1) {
      fprintf(stderr,"Invalid grid size %dx%dx%d\n",nfft[0],nfft[1],nfft[2]);
      exit(1);
    }

  if (debug) fprintf(stderr,"Moving from %dx%dx%d to %dx%dx%d recip grid\n",
                     fft[0],fft[1],fft[2],nfft[0],nfft[1],nfft[2]);

  *nptr=calloc(nfft[0]*nfft[1]*nfft[2],2*sizeof(double));
  if (!*nptr) error_exit("Malloc error for interpolated grid\n");
  n=*nptr;

  imax=min(fft[0]/2,nfft[0]/2);
  imin=max((1-fft[0])/2,(1-nfft[0])/2);

  jmax=min( fft[1]/2,nfft[1]/2);
  jmin=max((1-fft[1])/2,(1-nfft[1])/2);

  kmax=min(fft[2]/2,nfft[2]/2);
  kmin=max((1-fft[2])/2,(1-nfft[2])/2);
  
  for(i=imin;i<=imax;i++){
    if (i>=0) {
      ii=i;
      nii=i;
    }
    else{
      ii=fft[0]+i;
      nii=nfft[0]+i;
    }
    for(j=jmin;j<=jmax;j++){
      if (j>=0) {
        jj=j;
        njj=j;
      }
      else{
        jj=fft[1]+j;
        njj=nfft[1]+j;
      }
      for(k=kmin;k<=kmax;k++){
        if (k>=0) {
          kk=k;
          nkk=k;
        }
        else{
          kk=fft[2]+k;
          nkk=nfft[2]+k;
        }
        ind=2*(kk+fft[2]*(jj+ii*fft[1]));
        nind=2*(nkk+nfft[2]*(njj+nii*nfft[1]));
        n[nind]=o[ind];
        n[nind+1]=o[ind+1];
      }
    }
  }
}