1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
/* FFT interpolation of 3D real grid data */
/* Copyright (c) 2014 MJ Rutter
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3
* of the Licence, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see http://www.gnu.org/licenses/
*/
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include "c2xsf.h"
void fft3d(double *c, int *ngptar, int dir);
void pad_recip(double *o, int fft[3], double **ptr, int nfft[3]);
/* Do FFT interpolation of real space real data */
void interpolate3d(struct grid *old_grid, struct grid *new_grid){
int old_size,new_size,ffft[3],fft[3],nfft[3];
int i;
double *o,*n,scale;
/* A new grid dimension of zero means leave as was */
for(i=0;i<3;i++)
if (new_grid->size[i]==0) new_grid->size[i]=old_grid->size[i];
for(i=0;i<3;i++) fft[i]=old_grid->size[i];
for(i=0;i<3;i++) nfft[i]=new_grid->size[i];
if (debug>1)
fprintf(stderr,"Interpolating real data from %dx%dx%d to %dx%dx%d\n",
fft[0],fft[1],fft[2],nfft[0],nfft[1],nfft[2]);
old_size=fft[0]*fft[1]*fft[2];
new_size=nfft[0]*nfft[1]*nfft[2];
new_grid->data=malloc(new_size*sizeof(double));
if (!new_grid->data) error_exit("Malloc error for final grid in interpolate");
if((fft[0]==nfft[0])&&(fft[1]==nfft[1])&&(fft[2]==nfft[2])){
if (debug>1) fprintf(stderr,"Null interpolation reduced to copy.\n");
for(i=0;i<old_size;i++) new_grid->data[i]=old_grid->data[i];
return;
}
/* Pad real data to complex */
o=malloc(2*old_size*sizeof(double));
if (!o) error_exit("Malloc error for first grid in interpolate");
for(i=0;i<old_size;i++){
o[2*i]=old_grid->data[i];
o[2*i+1]=0.0;
}
/* FFT to reciprocal space */
/* A FORTRAN data order ... */
ffft[0]=fft[2];
ffft[1]=fft[1];
ffft[2]=fft[0];
if (debug>1) fprintf(stderr,"first FFT in interpolate\n");
fft3d(o,ffft,-1);
/* Pad onto interpolated reciprocal space grid */
/* Assume all bits zero is a double zero */
if (debug>1) fprintf(stderr,"padding in interpolate\n");
pad_recip(o,fft,&n,nfft);
free(o);
/* FFT back to real space */
if (debug>1) fprintf(stderr,"second FFT in interpolate\n");
ffft[0]=nfft[2];
ffft[1]=nfft[1];
ffft[2]=nfft[0];
fft3d(n,ffft,1);
if (debug>1) fprintf(stderr,"end of second FFT in interpolate\n");
/* Convert back to real and rescale */
scale=1.0/old_size;
for(i=0;i<new_size;i++)
new_grid->data[i]=scale*n[2*i];
free(n);
}
double interpolate0d(struct grid *gptr,double x_in[3]){
int i,j,n;
int ii,jj,kk;
int ny,nz;
int v[2][2][2][3];
double c1[2][2],c2[2];
double t,z,x[3];
ny=gptr->size[1];
nz=gptr->size[2];
for(i=0;i<3;i++){
x_in[i]=fmod(x_in[i],1.0);
if (x_in[i]<0) x_in[i]++;
}
for(i=0;i<3;i++) x[i]=x_in[i]*gptr->size[i];
for(i=0;i<3;i++) {
v[0][0][0][i]=(int)floor(x[i])%gptr->size[i];
if (v[0][0][0][i]<0) v[0][0][0][i]+=gptr->size[i];
x[i]-=floor(x[i]);
}
/* Fill in x co-ords of all cube vertices */
for(i=0;i<2;i++)
for(j=0;j<2;j++){
v[0][i][j][0]=v[0][0][0][0];
n=(v[0][0][0][0]+1)%gptr->size[0];
v[1][i][j][0]=n;
}
/* y co-ords */
for(i=0;i<2;i++)
for(j=0;j<2;j++){
v[i][0][j][1]=v[0][0][0][1];
n=(v[0][0][0][1]+1)%gptr->size[1];
v[i][1][j][1]=n;
}
/* z co-ords */
for(i=0;i<2;i++)
for(j=0;j<2;j++){
v[i][j][0][2]=v[0][0][0][2];
n=(v[0][0][0][2]+1)%gptr->size[2];
v[i][j][1][2]=n;
}
/* First step of interpolation: push out z */
for(i=0;i<2;i++)
for(j=0;j<2;j++){
ii=v[i][j][0][0];
jj=v[i][j][0][1];
kk=v[i][j][0][2];
t=(1-x[2])*gptr->data[kk+nz*(jj+ny*ii)];
ii=v[i][j][1][0];
jj=v[i][j][1][1];
kk=v[i][j][1][2];
t+=x[2]*gptr->data[kk+nz*(jj+ny*ii)];
c1[i][j]=t;
}
/* Second step, push out y */
for(i=0;i<2;i++){
t=(1-x[1])*c1[i][0];
t+=x[1]*c1[i][1];
c2[i]=t;
}
z=(1-x[0])*c2[0]+x[0]*c2[1];
return(z);
}
void interpolate1d(struct grid *gptr, double st[3], double end[3],
int npts, double *out){
int i,j;
double x[3];
for(i=0;i<npts;i++){
for(j=0;j<3;j++)
x[j]=st[j]+(i/(double)(npts-1))*(end[j]-st[j]);
out[i]=interpolate0d(gptr,x);
}
}
/* Pad into array assumed to be zeroed */
/* Deal with case of target being both larger and smaller than source */
void pad_recip(double *o, int fft[3], double **nptr, int nfft[3]){
int i,j,k,ii,jj,kk,nii,njj,nkk;
int imin,imax,jmin,jmax,kmin,kmax;
int ind,nind;
double *n;
for(i=0;i<3;i++)
if (nfft[i]==0) nfft[i]=fft[i];
for(i=0;i<3;i++)
if (nfft[i]<1) {
fprintf(stderr,"Invalid grid size %dx%dx%d\n",nfft[0],nfft[1],nfft[2]);
exit(1);
}
if (debug) fprintf(stderr,"Moving from %dx%dx%d to %dx%dx%d recip grid\n",
fft[0],fft[1],fft[2],nfft[0],nfft[1],nfft[2]);
*nptr=calloc(nfft[0]*nfft[1]*nfft[2],2*sizeof(double));
if (!*nptr) error_exit("Malloc error for interpolated grid\n");
n=*nptr;
imax=min(fft[0]/2,nfft[0]/2);
imin=max((1-fft[0])/2,(1-nfft[0])/2);
jmax=min( fft[1]/2,nfft[1]/2);
jmin=max((1-fft[1])/2,(1-nfft[1])/2);
kmax=min(fft[2]/2,nfft[2]/2);
kmin=max((1-fft[2])/2,(1-nfft[2])/2);
for(i=imin;i<=imax;i++){
if (i>=0) {
ii=i;
nii=i;
}
else{
ii=fft[0]+i;
nii=nfft[0]+i;
}
for(j=jmin;j<=jmax;j++){
if (j>=0) {
jj=j;
njj=j;
}
else{
jj=fft[1]+j;
njj=nfft[1]+j;
}
for(k=kmin;k<=kmax;k++){
if (k>=0) {
kk=k;
nkk=k;
}
else{
kk=fft[2]+k;
nkk=nfft[2]+k;
}
ind=2*(kk+fft[2]*(jj+ii*fft[1]));
nind=2*(nkk+nfft[2]*(njj+nii*nfft[1]));
n[nind]=o[ind];
n[nind+1]=o[ind+1];
}
}
}
}
|