1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
/* Function is passed two vectors. It applies the rotation
* which moves first to second to the basis set, returning
* that in new_cell. For obfuscation, the input vectors are
* also passed in new_cell.
*/
/* Copyright (c) 2007 MJ Rutter
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3
* of the Licence, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see http://www.gnu.org/licenses/
*/
#include <stdio.h>
#include <math.h>
#include "c2xsf.h"
int is_rhs(double b[3][3]); /* Found in basis.c */
void rotation(struct unit_cell *c, struct contents *m, double new_cell[3][3]){
double v1[3],v2[3],e[3],angle,tmp;
double rot_mat[3][3];
int i,j,k;
/* If new_cell[2] is not the zero vector, use it as Euler vector
* else determine our own Euler vector
*/
if ((new_cell[2][0]*new_cell[2][0]+new_cell[2][1]*new_cell[2][1]+
new_cell[2][2]*new_cell[2][2])==0.0){
/* Extract two vectors in absolute co-ords*/
for(i=0;i<3;i++){
v1[i]=new_cell[0][i];
v2[i]=new_cell[1][i];
}
/* euler is v1xv2 */
e[0]= v1[1]*v2[2]-v1[2]*v2[1];
e[1]=-v1[0]*v2[2]+v1[2]*v2[0];
e[2]= v1[0]*v2[1]-v1[1]*v2[0];
/* Which needs normalising */
tmp=sqrt(e[0]*e[0]+e[1]*e[1]+e[2]*e[2]);
if (tmp<1e-20) error_exit("Impossibly small cross product in rotation");
e[0]/=tmp;
e[1]/=tmp;
e[2]/=tmp;
}else{
e[0]=new_cell[2][0];
e[1]=new_cell[2][1];
e[2]=new_cell[2][2];
tmp=sqrt(e[0]*e[0]+e[1]*e[1]+e[2]*e[2]);
if (tmp<1e-20) error_exit("Impossibly small euler axis in rotation");
e[0]/=tmp;
e[1]/=tmp;
e[2]/=tmp;
/* project the vectors given onto plane perpendicular to euler axis */
tmp=e[0]*new_cell[0][0]+e[1]*new_cell[0][1]+e[2]*new_cell[0][2];
for(i=0;i<3;i++) v1[i]=new_cell[0][i]-tmp*e[i];
tmp=e[0]*new_cell[1][0]+e[1]*new_cell[1][1]+e[2]*new_cell[1][2];
for(i=0;i<3;i++) v2[i]=new_cell[1][i]-tmp*e[i];
}
/* angle is arccos(v1.v2 / mod(v1).mod(v2)) */
angle=acos((v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])/
sqrt((v1[0]*v1[0]+v1[1]*v1[1]+v1[2]*v1[2]) *
(v2[0]*v2[0]+v2[1]*v2[1]+v2[2]*v2[2])));
/* We have a sign ambiguity here, which we should try to resolve */
for(i=0;i<3;i++) rot_mat[0][i]=v1[i];
for(i=0;i<3;i++) rot_mat[1][i]=v2[i];
for(i=0;i<3;i++) rot_mat[2][i]=e[i];
if (debug>2) fprintf(stderr,"Sign is %s\n",is_rhs(rot_mat)?"+":"-");
if (!is_rhs(rot_mat)) angle*=-1;
if (debug>1) fprintf(stderr,"Rotating by %g degrees about (%g,%g,%g)\n",
angle*180/M_PI,e[0],e[1],e[2]);
/* Wikipedia says that the rotation matrix is:
*
* I cos(theta) + (1-cos(theta))ee^t - E sin(theta)
*
* ( 0 -e3 e2 )
* where E = ( e3 0 -e1 )
* ( -e2 e1 0 )
*
* with e=(e1,e2,e3) being the Euler vector (axis of rotation)
*/
for(i=0;i<3;i++)
for(j=0;j<3;j++)
rot_mat[i][j]=0;
for(i=0;i<3;i++) rot_mat[i][i]=cos(angle);
tmp=1-cos(angle);
for(i=0;i<3;i++)
for(j=0;j<3;j++)
rot_mat[i][j]+=tmp*e[i]*e[j];
tmp=sin(angle);
rot_mat[0][1]-=tmp*e[2];
rot_mat[0][2]+=tmp*e[1];
rot_mat[1][0]+=tmp*e[2];
rot_mat[1][2]-=tmp*e[0];
rot_mat[2][0]-=tmp*e[1];
rot_mat[2][1]+=tmp*e[0];
if (debug>2){
fprintf(stderr,"Rotation matrix\n");
for(i=0;i<=2;i++)
fprintf(stderr,"%f %f %f\n",
rot_mat[i][0],rot_mat[i][1],rot_mat[i][2]);
if (is_rhs(rot_mat)) fprintf(stderr,"(Determinant is >=0)\n");
else fprintf(stderr,"(Warning: determinant is <0\n");
fprintf(stderr,"(Old basis is a %shs)\n",is_rhs(c->basis)?"r":"l");
}
/* Now apply rotation to basis */
for(i=0;i<3;i++)
for(j=0;j<3;j++)
new_cell[i][j]=0;
for(i=0;i<3;i++)
for(j=0;j<3;j++)
for(k=0;k<3;k++)
new_cell[i][j]+=rot_mat[j][k]*c->basis[i][k];
if (debug>1){
fprintf(stderr,"New basis set\n");
for(i=0;i<=2;i++)
fprintf(stderr,"%f %f %f\n",
new_cell[i][0],new_cell[i][1],new_cell[i][2]);
}
for(i=0;i<3;i++)
for(j=0;j<3;j++)
c->basis[i][j]=new_cell[i][j];
if (debug>2)
fprintf(stderr,"(New basis is a %shs)\n",is_rhs(c->basis)?"r":"l");
/* Everything remains as was in relative co-ordinates, but the
* absolute co-ords of the atoms need recalculating, as does the
* reciprocal basis set
*/
addabs(m->atoms,m->n,c->basis);
real2rec(c);
}
|