File: basis.c

package info (click to toggle)
c2x 2.42.a%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,368 kB
  • sloc: ansic: 29,412; makefile: 61; sh: 1
file content (950 lines) | stat: -rw-r--r-- 22,939 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
/* Various utility functions for dealing with basis sets */


/* Copyright (c) 2007-2025 MJ Rutter 
 * 
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation, either version 3
 * of the Licence, or (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see http://www.gnu.org/licenses/
 */ 


#include<stdio.h>
#include<stdlib.h>
#include<math.h>

#include "c2xsf.h"

/* Check whether set is right- or left-handed */
int is_rhs(double b[3][3]){
  if ((b[0][0]*(b[1][1]*b[2][2]-b[1][2]*b[2][1])
      -b[0][1]*(b[1][0]*b[2][2]-b[1][2]*b[2][0])
      +b[0][2]*(b[1][0]*b[2][1]-b[1][1]*b[2][0]))<0) return(0);
  else return(1);
}

/* Update reciprocal basis set to reflect real basis set */

void real2rec(struct unit_cell *c){
  int i,j,k;
  double rec[3][3],v;
  double (*b)[3];

  b=c->basis;

  v=0.0;
  for(i=0;i<3;i++)
    for(j=0;j<3;j++)
      v+=b[i][j]*b[i][j];

  if (v==0.0) error_exit("all cell axes are length zero: no basis found?");

  for(i=0;i<3;i++){
    j=(i+1)%3;
    k=(i+2)%3;
    rec[i][0]=b[j][1]*b[k][2]-b[j][2]*b[k][1];
    rec[i][1]=-b[j][0]*b[k][2]+b[j][2]*b[k][0];
    rec[i][2]=b[j][0]*b[k][1]-b[j][1]*b[k][0];
  }

  v=0.0;
  for(i=0;i<3;i++) v+=b[0][i]*rec[0][i];

  if (v==0.0) error_exit("unit cell volume is zero in real2rec.");

  for(i=0;i<3;i++)
    for(j=0;j<3;j++)
      c->recip[i][j]=rec[i][j]/v;

  c->vol=fabs(v);
}

/* Update fractional atomic co-ordinates to reflect absolute
 * atomic co-ordinates. Does NOT reduce co-ords to be less than 1 --
 * sym_vec relies on this.
 */
void addfrac(struct atom *a,int na, double rec[3][3]){
  int i,j,k;

  for(i=0;i<na;i++){
    for(j=0;j<3;j++){
      a[i].frac[j]=0;
      for(k=0;k<3;k++)
         a[i].frac[j]+=a[i].abs[k]*rec[j][k];
      if ((a[i].frac[j]<0.0)&&(a[i].frac[j]>-1e-15)) a[i].frac[j]=0.0;
    }
  }
}

/* Update absolute atomic co-ordinates to reflect 
 * fractional atomic co-ordinates
 */
void addabs(struct atom *a,int na, double b[3][3]){
  int i,j,k;

  for(i=0;i<na;i++){
    for(j=0;j<3;j++){
      a[i].abs[j]=0;
      for(k=0;k<3;k++)
         a[i].abs[j]+=a[i].frac[k]*b[k][j];
    }
  }
}

/* Fix co-ordinates to force everything into 1st unit cell */

void reduce_cell(struct atom *a, int na, double b[3][3]){
  int i,j,fixed=0;

  for(i=0;i<na;i++){
    for(j=0;j<3;j++){
      if ((a[i].frac[j]>=0)&&(a[i].frac[j]<1)) continue;
      fixed=1;
      a[i].frac[j]=fmod(a[i].frac[j],1.0);
      if (a[i].frac[j]<0) a[i].frac[j]+=1.0;
    }
  }

  if (fixed) addabs(a,na,b);
}

/* Fix co-ordinates to force everything into 1st unit cell (with tolerance) */

void reduce_cell_tol(struct atom *a, int na, double b[3][3],double eps){
  int i,j,fixed=0;

  for(i=0;i<na;i++){
    for(j=0;j<3;j++){
      if ((a[i].frac[j]>=0)&&(a[i].frac[j]<1-eps)) continue;
      fixed=1;
      a[i].frac[j]=fmod(a[i].frac[j],1.0);
      if (a[i].frac[j]<0) a[i].frac[j]+=1.0;
      if (a[i].frac[j]>1-eps) a[i].frac[j]=0;
    }
  }

  if (fixed) addabs(a,na,b);
}

void abc2cart(double *abc, struct unit_cell *c){
/* convert from a,b,c,alpha,beta,gamma to Cartesian basis */
  double alpha,beta,gamma,x;
  double (*b)[3];
  int i;

  b=c->basis;

  if (debug>2)fprintf(stderr,"abc2cart: original basis:\n%f %f %f\n%f %f %f\n",
     abc[0],abc[1],abc[2],abc[3],abc[4],abc[5]);

  alpha=abc[3]*M_PI/180;
  beta=abc[4]*M_PI/180;
  gamma=abc[5]*M_PI/180;

/* a lies along x axis */

  b[0][0]=abc[0];
  b[0][1]=0.0;
  b[0][2]=0.0;

/* b is in xy plane and angle gamma to x */

  b[1][0]=abc[1]*cos(gamma);
  b[1][1]=abc[1]*sin(gamma);
  b[1][2]=0.0;

/* a,b,c is a right-hand set */

  b[2][0]=abc[2]*cos(beta);

/* basis[2].basis[1] = abc[2] abc[1] cos(alpha) */

  x=abc[2]*abc[1]*cos(alpha)-b[1][0]*b[2][0];
  b[2][1]=0;
  if (fabs(x)>1e-20){
    if (fabs(b[1][1])>1e-30){
      b[2][1]=x/b[1][1];
    }else{
      error_exit("impossible problem in abc2cart, perhaps gamma is zero.\n");
    }
  }

/* And mod(basis[2][])=abc[2] */

  b[2][2]=sqrt(abc[2]*abc[2]-b[2][0]*b[2][0]
                                -b[2][1]*b[2][1]);

/* Worry about handedness */

  if (!is_rhs(b)){
    for(i=0;i<3;i++) b[2][i]*=-1;
  }
  real2rec(c);

  if(debug>2){
    int i;
    fprintf(stderr,"abc2cart: final basis:\n");
      for(i=0;i<=2;i++)
        fprintf(stderr,"%f %f %f\n",b[i][0],b[i][1],b[i][2]);
  }

}

void vabs2frac(double v[3],double recip[3][3]){
  int i,j;
  double vtmp[3];

  for(i=0;i<3;i++){
    vtmp[i]=0;
    for(j=0;j<3;j++)
      vtmp[i]+=v[j]*recip[i][j];
  }
  for(i=0;i<3;i++)
    v[i]=vtmp[i];
}

void vfrac2abs(double v[3],double basis[3][3]){
  int i,j;
  double vtmp[3];

  for(i=0;i<3;i++){
    vtmp[i]=0;
    for(j=0;j<3;j++)
      vtmp[i]+=v[j]*basis[j][i];
  }
  for(i=0;i<3;i++)
    v[i]=vtmp[i];
}

/* Convert from cartesian basis set to a,b,c,alpha,beta,gamma */
/* If m and gptr are NULL, just calculate a,b,c,alpha,beta,gamma */
/* If m not NULL, rotate axes to a along x, b in x-y plane, etc */

/* Note: basis2abc implies a rotation in Cartesian space if one
 *        believes that a is along x, b in the x-y plane, etc.
 *
 * The fractional co-ordinates in the motif remain valid whatever
 *
 * If the rotation happens, then the Cartesian real and recip basis
 *   must be updated, along with the Cartesian atomic positions,
 *   and the symmetry operations expressed in Cartesians.
 *
 * However, if one just wants the values of abc[6], and does not
 * care that abc2cart would produce a rotation of the contents of
 * m, c and s, then there is no need to worry.
 */

void cart2abc(struct unit_cell *c, struct contents *m, double *abc, 
              struct grid *gptr){
  int i;
  
  if (debug>2) fprintf(stderr,"cart2abc called with motif %s\n",
                       m?"present":"absent");

  basis2abc(c->basis,abc);
  
  /* We may now have a different orientation to the original, so,
     if we were passed a motif: */

  if (m){
    if (is_rhs(c->basis)==0) make_rhs(c,m,abc,NULL,gptr);
    /* Correct Cartesian vector atomic quantities */
    for(i=0;i<m->n;i++){
      vabs2frac(m->atoms[i].force,c->recip);
      vabs2frac(m->atoms[i].v,c->recip);
      vabs2frac(m->atoms[i].vspin,c->recip);
    }
    abc2cart(abc,c);
    real2rec(c);
    addabs(m->atoms,m->n,c->basis);
    for(i=0;i<m->n;i++){
      vfrac2abs(m->atoms[i].force,c->basis);
      vfrac2abs(m->atoms[i].v,c->basis);
      vfrac2abs(m->atoms[i].vspin,c->basis);
    }
  }

  if (c->primitive){
    free_cell(c->primitive);
    c->primitive=NULL;
  }
  
}

/* As cart2abc, but also correct symmetry operations for any rotation
   which occurs */

void cart2abc_sym(struct unit_cell *c, struct contents *m, double *abc, 
		  struct grid *gptr, struct symmetry *s){
  int i,j,k;
  double basis_t[3][3],recip_t[3][3];
  double (*rot)[3][3],(*tr)[3];

  if (s){
    rot=malloc(9*s->n*sizeof(double));
    tr=malloc(3*s->n*sizeof(double));
    if ((!rot)||(!tr)) error_exit("malloc error for symops");

    for(i=0;i<s->n;i++){
      mat_a2f(s->ops[i].mat,rot[i],c->basis,c->recip);

      for(j=0;j<3;j++){
	tr[i][j]=0;
	if (s->ops[i].tr)
	  for(k=0;k<3;k++)
	    tr[i][j]+=s->ops[i].tr[k]*c->recip[j][k];
      }
    }
  }

  cart2abc(c,m,abc,gptr);

  if (s){

    for(i=0;i<3;i++)
      for(j=0;j<3;j++)
	basis_t[i][j]=c->basis[j][i];
    
    for(i=0;i<3;i++)
      for(j=0;j<3;j++)
	recip_t[i][j]=c->recip[j][i];
    
    
    for(i=0;i<s->n;i++){
      mat_a2f(rot[i],s->ops[i].mat,recip_t,basis_t);

      if (s->ops[i].tr){
	for(j=0;j<3;j++){
	  s->ops[i].tr[j]=0;
	  for(k=0;k<3;k++)
	    s->ops[i].tr[j]+=tr[i][k]*c->basis[k][j];
	}
      }
    }
    free(tr);
    free(rot);
  }
}

/* Convert from cartesian basis set to a,b,c,alpha,beta,gamma */
void basis2abc(double b[3][3], double abc[6]){
  int i,j,k;

  for(i=0;i<3;i++)
    abc[i]=sqrt(b[i][0]*b[i][0]+b[i][1]*b[i][1]+
                b[i][2]*b[i][2]);

  for(i=3;i<6;i++){
    j=(i+1)%3;
    k=(i+2)%3;
    abc[i]=acos((b[j][0]*b[k][0]+b[j][1]*b[k][1]+
                 b[j][2]*b[k][2])/(abc[j]*abc[k]))*180/M_PI;
  }
}

/* Make a set of axes into a rhs */
/* NB sym ops are in absolte co-ords, so do not need adjusting */
void make_rhs(struct unit_cell *c, struct contents *m, double *abc,
              struct kpts *kp, struct grid *gptr){
  int i,j,k,ic,itmp,preserve_c,npts;
  double dtmp,(*b)[3],*dptr,*dptr2,*new_grid;

  preserve_c=(flags&PRESERVE_C)>>PC_SHIFT;
  
  //  for(i=0;i<3;i++)
  //    for(j=0;j<3;j++)
  //      b[i][j]=c->basis[i][j];
  b=c->basis;
  
  if (is_rhs(b)==1) return;

  /* We are trying to convert a lhs of vectors
   * to abc format.
   * We should warn people,
   * Exchange second and third axes
   * Exchange second and third fractional co-ords
   */
  if (flags&LHS_FUDGE) {
    fprintf(stderr,"Need rh set of vectors for abc or Vasp output.\n"
	    "Have lh set, and exchange prohibitted...\n");
  }
  else {
    fprintf(stderr,"Need rh set of vectors. "
	    "Exchanging basis vectors %d and %d.\n",
	    (1+preserve_c)%3+1,(2+preserve_c)%3+1);

    for(i=0;i<3;i++){
      dtmp=b[(1+preserve_c)%3][i];
      b[(1+preserve_c)%3][i]=b[(2+preserve_c)%3][i];
      b[(2+preserve_c)%3][i]=dtmp;
    }
	
    real2rec(c);
    for(i=0;i<m->n;i++){
      dtmp=m->atoms[i].frac[(1+preserve_c)%3];
      m->atoms[i].frac[(1+preserve_c)%3]=m->atoms[i].frac[(2+preserve_c)%3];
      m->atoms[i].frac[(2+preserve_c)%3]=dtmp;
    }

    if (abc){
      dtmp=abc[(1+preserve_c)%3];
      abc[(1+preserve_c)%3]=abc[(2+preserve_c)%3];
      abc[(2+preserve_c)%3]=dtmp;

      dtmp=abc[(1+preserve_c)%3+3];
      abc[(1+preserve_c)%3+3]=abc[(2+preserve_c)%3+3];
      abc[(2+preserve_c)%3+3]=dtmp;
    }

    if (kp){
      if (kp->n){
 	for(i=0;i<kp->n;i++){
	  dtmp=kp->kpts[i].frac[(1+preserve_c)%3];
	  kp->kpts[i].frac[(1+preserve_c)%3]=kp->kpts[i].frac[(2+preserve_c)%3];
	  kp->kpts[i].frac[(2+preserve_c)%3]=dtmp;
	}
      }
      if (kp->mp){
	itmp=kp->mp->grid[(1+preserve_c)%3];
	kp->mp->grid[(1+preserve_c)%3]=kp->mp->grid[(2+preserve_c)%3];
	kp->mp->grid[(2+preserve_c)%3]=itmp;
	dtmp=kp->mp->disp[(1+preserve_c)%3];
	kp->mp->disp[(1+preserve_c)%3]=kp->mp->disp[(2+preserve_c)%3];
	kp->mp->disp[(2+preserve_c)%3]=dtmp;
      }
      if (kp->bs_n){
 	for(i=0;i<kp->bs_n;i++){
	  dtmp=kp->bs_kpts[i].frac[(1+preserve_c)%3];
	  kp->bs_kpts[i].frac[(1+preserve_c)%3]=
	    kp->bs_kpts[i].frac[(2+preserve_c)%3];
	  kp->bs_kpts[i].frac[(2+preserve_c)%3]=dtmp;
	}
      }
      if (kp->bs_mp){
	itmp=kp->bs_mp->grid[(1+preserve_c)%3];
	kp->bs_mp->grid[(1+preserve_c)%3]=kp->bs_mp->grid[(2+preserve_c)%3];
	kp->bs_mp->grid[(2+preserve_c)%3]=itmp;
	dtmp=kp->bs_mp->disp[(1+preserve_c)%3];
	kp->bs_mp->disp[(1+preserve_c)%3]=kp->bs_mp->disp[(2+preserve_c)%3];
	kp->bs_mp->disp[(2+preserve_c)%3]=dtmp;
      }
      if (kp->path_nkpt){
 	for(i=0;i<kp->path_nkpt;i++){
	  dtmp=kp->path_kpts[i].frac[(1+preserve_c)%3];
	  kp->path_kpts[i].frac[(1+preserve_c)%3]=
	    kp->path_kpts[i].frac[(2+preserve_c)%3];
	  kp->path_kpts[i].frac[(2+preserve_c)%3]=dtmp;
	}
      }
      if (kp->path_n){
 	for(i=0;i<kp->path_n;i++){
	  dtmp=kp->path[i].frac[(1+preserve_c)%3];
	  kp->path[i].frac[(1+preserve_c)%3]=
	    kp->path[i].frac[(2+preserve_c)%3];
	  kp->path[i].frac[(2+preserve_c)%3]=dtmp;
	}
      }
    } /* end if (kp) */
    
    while((gptr)&&(gptr->data)){
      if (debug>1) fprintf(stderr,"Exchanging axes for 3D grid %dx%dx%d\n",
			   gptr->size[0],gptr->size[1],gptr->size[2]);

      itmp=gptr->size[(1+preserve_c)%3];
      gptr->size[(1+preserve_c)%3]=gptr->size[(2+preserve_c)%3];
      gptr->size[(2+preserve_c)%3]=itmp;

      npts=gptr->size[0]*gptr->size[1]*gptr->size[2];
      new_grid=malloc(npts*gptr->comps*sizeof(double));
      if (!new_grid) error_exit("Malloc error in cart2abc");
      dptr=new_grid;
      for(ic=0;ic<gptr->comps;ic++){
	if (preserve_c==2){
	  for(k=0;k<gptr->size[0];k++){
	    for(j=0;j<gptr->size[1];j++){
	      dptr2=gptr->data+((j*gptr->size[0])+k)*gptr->size[2]+ic*npts;
	      dptr=new_grid+((k*gptr->size[1])+j)*gptr->size[2]+ic*npts;
	      for(i=0;i<gptr->size[2];i++){
		*(dptr++)=*(dptr2++);
	      }
	    }
	  }
	}
	else if (preserve_c==0){
	  for(k=0;k<gptr->size[0];k++){
	    for(j=0;j<gptr->size[1];j++){
	      dptr2=gptr->data+k*gptr->size[1]*gptr->size[2]+ic*npts;
	      dptr=new_grid+((k*gptr->size[1])+j)*gptr->size[2]+ic*npts;
	      for(i=0;i<gptr->size[2];i++){
		*(dptr++)=*(dptr2+j+i*gptr->size[1]);
	      }
	    }
	  }
	}
	else error_exit("Unsupported value of preserve_c in make_rhs");
      }
    
      free(gptr->data);
      gptr->data=new_grid;
	  
      gptr=gptr->next;
    }
  }

}

/* Minimum distance between two points in periodic system */
double dist(double a,double b){
  double d;

  d=fabs(fmod(a-b,1.0));
  if (d>0.5) d=1-d;

  return d;
}


/* See if atom is in a given list. Use global tolerance value in
 * comparison of fractional co-ordinates, multiplied by axis length,
 * so tolerance is effectively in Angstroms */
int atom_in_list(struct atom *b, struct atom *a, int n, double basis[3][3]){
  int hit,i;
  double abc[6];

  basis2abc(basis,abc);

  hit=-1;
  for(i=0;i<n;i++){
    if ((a[i].atno==b->atno)&&
        (dist(a[i].frac[0],b->frac[0])<tol*abc[0])&&
        (dist(a[i].frac[1],b->frac[1])<tol*abc[1])&&
        (dist(a[i].frac[2],b->frac[2])<tol*abc[2])){
      hit=i;
      break;
    }
  }

  return hit;
}

/* Have one function for neatly initialising all components of an atom */
void init_atoms(struct atom *a, int n){
  int i,j;
  for(i=0;i<n;i++){
    a[i].atno=0;
    for(j=0;j<3;j++) a[i].abs[j]=0;
    for(j=0;j<3;j++) a[i].frac[j]=0;
    for(j=0;j<3;j++) a[i].force[j]=0;
    for(j=0;j<3;j++) a[i].v[j]=0;
    for(j=0;j<3;j++) a[i].vspin[j]=0;
    a[i].wt=0;
    a[i].spin=0;
    a[i].chg=0;
    a[i].site_chg=0;
    a[i].label=NULL;
  }
}


void vacuum_adjust(struct unit_cell *c, struct contents *m, double new_abc[3]){
  int i,j,k;
  double stretch,old_len;

  for(i=0;i<3;i++){
    if (new_abc[i]==0) continue;

    old_len=sqrt(vmod2(c->basis[i]));
    
    if (debug) fprintf(stderr,"Adjusting %c axis from %f A to %f A\n",
                       'a'+i,old_len,new_abc[i]);

    stretch=0.5*(new_abc[i]/old_len-1);
    for(j=0;j<m->n;j++)
      for(k=0;k<3;k++)
	m->atoms[j].abs[k]+=stretch*c->basis[i][k];

    stretch=new_abc[i]/old_len;
    for(j=0;j<3;j++)
      c->basis[i][j]*=stretch;
  }

  real2rec(c);
  c->vol=fabs(c->vol);
  addfrac(m->atoms,m->n,c->recip);
  if (c->primitive){
    free_cell(c->primitive);
    c->primitive=NULL;
  }

}


void old_in_new(double old_basis[3][3],double new_recip[3][3]){
  int i,j,k;
  double dot;
  char *fmt;

  fmt="%g";
  if (flags&HIPREC) fmt="%.14g";
  
  for(i=0;i<3;i++){
    fprintf(stderr,"(");
    for(j=0;j<3;j++){
      dot=0;
      for(k=0;k<3;k++)
        dot+=old_basis[i][k]*new_recip[j][k];

      fprintf(stderr,fmt,dot);
      if (j!=2)fprintf(stderr,",");
    }
    fprintf(stderr,")");
  }
  fprintf(stderr,"\n");

}

void print_old_in_new(double old_basis[3][3], double new_basis[3][3]){
  int i,j;
  double buff[9];
  struct unit_cell c;

  init_cell(&c);
  c.basis=(void*)buff;
  
  for(i=0;i<3;i++)
    for(j=0;j<3;j++)
      c.basis[i][j]=new_basis[i][j];

  real2rec(&c);

  fprintf(stderr,"Old basis in terms of new: ");
  old_in_new(old_basis,c.recip);

  for(i=0;i<3;i++)
    for(j=0;j<3;j++)
      c.basis[i][j]=old_basis[i][j];
  
  real2rec(&c);

  fprintf(stderr,"New basis in terms of old: ");
  old_in_new(new_basis,c.recip);
}

void cell_check(struct unit_cell *c, struct contents *m){
  int i,j,k,ii,n1,n2;
  double min_dist,dtmp,vec[3],frac[3];
  struct unit_cell compact_cell;

  n1=n2=0;

  if (!c->basis) return;
  
  if (fabs(c->vol)<2)
    fprintf(stderr,"*** WARNING: surprisingly small cell volume %g\n",
	    fabs(c->vol));

  if (m->n<=1) return;

  if (((m->n>2000)&&(debug<1))||((m->n>10000)&&(debug<2))
      ||((m->n>50000)&&(debug<3))){
    fprintf(stderr,
	    "Skipping minimum distance check due to high number of atoms\n");
    return;
  }

  compact_cell.basis=malloc(9*sizeof(double));
  if (!compact_cell.basis) error_exit("Malloc error in cell_check");
  for(i=0;i<3;i++)
    for(j=0;j<3;j++)
      compact_cell.basis[i][j]=c->basis[i][j];

  shorten(compact_cell.basis);
  real2rec(&compact_cell);
  
  min_dist=1e30;
  
  for(i=0;i<m->n;i++){
    for(j=i+1;j<m->n;j++){
      for(k=0;k<3;k++)
        vec[k]=m->atoms[i].abs[k]-m->atoms[j].abs[k];
      for(ii=0;ii<3;ii++){
        frac[ii]=0;
        for(k=0;k<3;k++)
          frac[ii]+=vec[k]*compact_cell.recip[ii][k];
      }
      for(k=0;k<3;k++){
        frac[k]=fmod(frac[k],1.0);
        if (frac[k]>0.5) frac[k]-=1;
        else if (frac[k]<-0.5) frac[k]+=1;
      }
      for(ii=0;ii<3;ii++){
        vec[ii]=0;
        for(k=0;k<3;k++)
          vec[ii]+=frac[k]*compact_cell.basis[k][ii];
      }
      
      dtmp=vmod2(vec);
      if (dtmp<min_dist) {
	min_dist=dtmp;
	n1=i;
	n2=j;
      }
    }
  }

  min_dist=sqrt(min_dist);
  
  if (min_dist<0.2)
    fprintf(stderr,"*** WARNING: closest atoms separation %g A\n",min_dist);
  else if (debug)
    fprintf(stderr,"Closest atoms separation %g A\n",min_dist);
  
  if ((min_dist<0.2)||(debug>1)){
    fprintf(stderr,"Closest atoms are (fractional coords):\n");
    fprintf(stderr,"%3s % 11.7f % 11.7f % 11.7f\n",
	    atno2sym(m->atoms[n1].atno),m->atoms[n1].frac[0],
            m->atoms[n1].frac[1],m->atoms[n1].frac[2]);
    fprintf(stderr,"%3s % 11.7f % 11.7f % 11.7f\n",
	    atno2sym(m->atoms[n2].atno),m->atoms[n2].frac[0],
            m->atoms[n2].frac[1],m->atoms[n2].frac[2]);
  }

  free(compact_cell.basis);
  
}

void addspec(struct contents *m){
  int i,j,nspec,*species;

  species=malloc(m->n*sizeof(int));
  if (!species) error_exit("malloc error in addspec");
  nspec=0;

  for(i=0;i<m->n;i++){
    for(j=0;j<nspec;j++) if (m->atoms[i].atno==species[j]) break;
    if (j==nspec){  /* new species */
      species[j]=m->atoms[i].atno;
      nspec++;
    }
  }

  m->nspec=nspec;
  m->spec=malloc(nspec*sizeof(struct species));
  if (!m->spec) error_exit("malloc error for species");

  for(i=0;i<nspec;i++)
    m->spec[i].atno=species[i];

  free(species);
  
}

void add_primitive(struct unit_cell *c, struct contents *m){
#ifdef SPGLIB
  int i,j;
  double old_basis[3][3],old_recip[3][3];
#endif
  c->primitive=malloc(sizeof(struct unit_cell));
  if (!c->primitive) error_exit("malloc error in add_primitive for cell");
  init_cell(c->primitive);
  c->primitive->basis=malloc(9*sizeof(double));
  if (!c->primitive->basis)
    error_exit("malloc error in add_primitive for vectors");
  
#ifdef SPGLIB
  for(i=0;i<3;i++){
    for(j=0;j<3;j++){
      old_basis[i][j]=c->basis[i][j];
      old_recip[i][j]=c->recip[i][j];
    }
  }

  cspg_op(c,m,NULL,NULL,CSPG_PRIM_LATT,tol);

  for(i=0;i<3;i++){
    for(j=0;j<3;j++){
      c->primitive->basis[i][j]=c->basis[i][j];
      c->basis[i][j]=old_basis[i][j];
      c->primitive->recip[i][j]=c->recip[i][j];
      c->recip[i][j]=old_recip[i][j];
    }
  }
#else
  primitive(c,m,c->primitive->basis);
  real2rec(c->primitive);
#endif
}  

/* How many points of given spacing lie between two points given
 * in fractional coordinates?
 */
int npts_a2b(double a[3], double b[3], double spacing, double basis[3][3]){
  int i;
  struct atom atm;

  if (spacing==0) return 0;
  for(i=0;i<3;i++)
    atm.frac[i]=b[i]-a[i];
  addabs(&atm,1,basis);
  return (int)(ceil(sqrt(vmod2(atm.abs))/spacing));
}


/* Is one axis orthogonal to the other two? */

int is_orthog(int axis, double basis[3][3]){
  double abc[6];
  basis2abc(basis,abc);
  if ((aeq(abc[3+((axis+1)%3)],90))&&
      (aeq(abc[3+((axis+2)%3)],90)))
    return 1;
  return 0;
}

struct grid *grid_new(struct grid *gptr){
  if (gptr->next) gptr=gptr->next;
  gptr->next=malloc(sizeof(struct grid));
  if (!gptr->next) error_exit("Malloc error for struct grid");
  init_grid(gptr->next);
  return(gptr);
}

void init_cell(struct unit_cell *c){
  int i,j;
  
  c->basis=NULL;
  c->stress=NULL;
  c->primitive=NULL;
  c->fbz=NULL;
  c->ibz=NULL;
  c->ws_cell=NULL;
  c->vol=0;
  for(i=0;i<3;i++)
    for(j=0;j<3;j++)
      c->recip[i][j]=0.0;
}

void free_cell(struct unit_cell *c){

  if (!c) return;
  if (c->primitive) free_cell(c->primitive);
  if (c->stress) free(c->stress);
  if (c->basis) free(c->basis);
  free(c);
}

void init_elect(struct es *e){
  e->band_range="-";
  e->kpt_range="1";
  e->spin_range="-";
  e->nspins=1;
  e->nbspins=1;
  e->nspinors=1;
  e->spin_method=NULL;
  e->cut_off=0;
  e->etol=0;
  e->dip_corr=NULL;
  e->dip_corr_dir=NULL;
  e->dip_ctr=NULL;
  e->charge=NULL;
  e->energy=NULL;
  e->e_fermi=NULL;
  e->nbands=0;
  e->occ=NULL;
  e->eval=NULL;
  e->nel=e->nup_minus_down=0;
  e->max_nplwv=0;
  e->path_eval=e->path_occ=NULL;
  e->path_nbands=0;
  e->ldos=NULL;
  e->ltype=0;
  e->lwt=NULL;
  e->lwork=NULL;
  e->lwrk_grid[0]=e->lwrk_grid[1]=e->lwrk_grid[2]=0;
}

void init_motif(struct contents *m){
  m->atoms=NULL;
  m->n=m->nspec=m->forces=m->velocities=0;
  m->title=NULL;
  m->species_misc=NULL;
  m->block_species=NULL;
  m->spec=NULL;
  m->comment=malloc(sizeof(struct cmt));
  if (!m->comment) error_exit("malloc error for struct cmt");
  m->comment->txt=NULL;
  m->comment->next=NULL;
  m->dict=malloc(sizeof(struct dct));
  if (!m->dict) error_exit("malloc error for struct dict");
  m->dict->key=NULL;
  m->dict->next=NULL;
}

void init_grid(struct grid *g){
  int i;
  
  for(i=0;i<3;i++) g->size[i]=0;
  g->comps=1;
  g->next=NULL;
  g->data=NULL;
  g->name=NULL;
  g->origin_abs=NULL;
}

void init_kpts(struct kpts *k){
  k->n=0;
  k->kpts=NULL;
  k->mp=NULL;
  k->spacing=NULL;
  k->bs_n=0;
  k->bs_kpts=NULL;
  k->bs_mp=NULL;
  k->bs_spacing=NULL;
  k->path_nkpt=0;
  k->path_kpts=NULL;
  k->path_n=0;
  k->path=NULL;
  k->path_labels=NULL;
  k->path_seg_pts=NULL;
  k->path_spacing=NULL;
  k->break_n=0;
  k->ibreaks=NULL;
  k->breaks=NULL;
}

void free_kpts(struct kpts *k){
  if (k->kpts) free(k->kpts);
  if (k->mp) free(k->mp);
  if (k->spacing) free(k->spacing);
  if (k->bs_kpts) free(k->bs_kpts);
  if (k->bs_mp) free(k->bs_mp);
  if (k->bs_spacing) free(k->bs_spacing);
  if (k->path) free(k->path);
  if (k->path_spacing) free(k->path_spacing);
  if (k->breaks) free(k->breaks);
}

void init_sym(struct symmetry *s){
  s->tol=NULL;
  s->ops=NULL;
  s->gen=NULL;
  s->n=0;
}

void init_tseries(struct time_series *ts){
  ts->nsteps=0;
  ts->cells=NULL;
  ts->m=NULL;
  ts->energies=NULL;
  ts->enthalpies=NULL;
  ts->nc=ts->nm=ts->nen=ts->nenth=0;
}