File: bm_plot.py

package info (click to toggle)
c4core 0.2.7-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 5,184 kB
  • sloc: cpp: 35,521; python: 2,786; javascript: 414; makefile: 6
file content (746 lines) | stat: -rw-r--r-- 26,596 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
import os
import sys
import copy
import re
import itertools
import typing
import enum

# https://stackoverflow.com/questions/11351032/named-tuple-and-default-values-for-optional-keyword-arguments
from dataclasses import dataclass

from munch import Munch, munchify

import bokeh.io as bki
import bokeh.models as bkm
import bokeh.plotting as bkp
import bokeh.transform as bkt
import bokeh.layouts as bkl
from bokeh.models.markers import marker_types as bk_markers
# https://docs.bokeh.org/en/latest/docs/reference/palettes.html
from bokeh.palettes import d3 as bk_palette_d3
bk_palette = bk_palette_d3['Category20c'][20]

# saving bokeh to png is not working, so we save png using matplotlib
import matplotlib.pyplot as plt
import matplotlib.ticker as plttck
plt_markers = [c for c in ".,ov^<>1234spP*hH+xXDdl"]

from bm_util import _enum
from bm_util import *
from bm_run import BenchmarkRun, BenchmarkPanel


# ------------------------------------------------------------------------------
# ------------------------------------------------------------------------------
# ------------------------------------------------------------------------------


# https://stackoverflow.com/questions/11351032/named-tuple-and-default-values-for-optional-keyword-arguments
@dataclass
class BarChartSpecs:
    horizontal: bool = True
    bar_width: float = 0.9


@dataclass
class LineChartSpecs:
    width: int = 1000
    xlog: bool = False
    ylog: bool = False
    xlabel: str = ""
    ylabel: str = ""


def _plt_save_png(name):
    log(name)
    plt.savefig(name, bbox_inches='tight', dpi=100)


def _plt_clear():
    plt.clf()


def _bokeh_save_html(name, p):
    log(name)
    bki.save(p, name)


def _bokeh_adjust_figure_props(p):
    p.toolbar.autohide = True
    #p.toolbar.active_inspect = [hover_tool, crosshair_tool]
    p.toolbar.active_drag = "auto"
    p.toolbar.active_scroll = "auto"
    p.legend
    p.legend.click_policy = "hide"
    p.legend.label_text_font_size = "10px"


def bokeh_plot_many(plots, name: str, ncols: int = 2):
    layout = bkl.gridplot(plots, ncols=ncols)
    _bokeh_save_html(name, layout)
    #bkp.show(layout)


def plot_benchmark_run_as_bars(bm: BenchmarkRun, title: str,
                               bar_names, bar_values, bar_label,
                               **kwargs):
    kwargs = BarChartSpecs(**kwargs)
    #
    palette = itertools.cycle(bk_palette)
    colors = [next(palette) for _ in bar_names]
    #
    fig_args_bokeh = {
        "title": title,
        #"toolbar_location": None,
        #"tools": ""
    }
    if kwargs.horizontal:
        #
        # plot with bokeh (interactive, but cannot export png)
        rnames = list(reversed(bar_names))
        rvalues = list(reversed(bar_values))
        rcolors = list(reversed(colors))
        p = bkp.figure(y_range=rnames, **fig_args_bokeh)
        p.hbar(y=rnames, right=rvalues, fill_color=rcolors,
               line_color=rcolors, height=kwargs.bar_width)
        p.ygrid.grid_line_color = None
        p.x_range.start = 0
        p.xaxis.axis_label = bar_label
        #
        # plot with matplotlib (to export png)
        p_ = plt.barh(y=rnames, width=rvalues, color=rcolors,
                      height=kwargs.bar_width)
        plt.gca().xaxis.grid(True)
        plt.gca().xaxis.set_minor_locator(plttck.AutoMinorLocator())
        plt.xlabel(bar_label, fontsize='small')
        plt.yticks(fontsize='x-small')
        plt.title(title)
    else:
        #
        # plot with bokeh (interactive, but cannot export png)
        p = bkp.figure(x_range=bar_names, **fig_args_bokeh)
        p.vbar(x=bar_names, top=bar_values, fill_color=colors,
               line_color=colors, width=kwargs.bar_width)
        p.xaxis.major_label_orientation = 1
        p.xgrid.grid_line_color = None
        p.y_range.start = 0
        p.yaxis.axis_label = bar_label
        #
        # plot with matplotlib (to export png)
        p_ = plt.bar(x=bar_names, height=bar_values, color=colors,
                     width=kwargs.bar_width)
        plt.gca().yaxis.grid(True)
        plt.gca().yaxis.set_minor_locator(plttck.AutoMinorLocator())
        plt.ylabel(bar_label, fontsize='small')
        plt.xticks(fontsize='x-small')
        plt.title(title)
    _bokeh_adjust_figure_props(p)
    return p, p_


def plot_benchmark_panel_as_lines(bm_panel: BenchmarkPanel, title: str,
                                  xget, yget, nameget,
                                  **kwargs):
    kwargs = LineChartSpecs(**kwargs)
    #
    colors = itertools.cycle(bk_palette)
    markers = itertools.cycle(bk_markers)
    markers_ = itertools.cycle(plt_markers)
    #
    # plot with bokeh (interactive, but cannot export png)
    p = bkp.figure(title=title,
                   x_axis_type="log" if kwargs.xlog else "linear",
                   y_axis_type="log" if kwargs.ylog else "linear",
                   #background_fill_color="#fafafa",
                   x_axis_label=kwargs.xlabel,
                   y_axis_label=kwargs.ylabel,
                   plot_width=kwargs.width,
                   )
    # plot with matplotlib (to export png)
    plt.title(title)
    for bm in bm_panel.runs:
        x = xget(bm)
        y = yget(bm)
        line_name = nameget(bm)
        color = next(colors)
        marker = next(markers)
        marker_ = next(markers_)
        # plot with bokeh (interactive, but cannot export png)
        #legends.append(LegendItem(name=c, label=line_name))
        p.scatter(x, y, marker=marker, size=8, color=color,
                  legend_label=line_name)
        p.line(x, y, color=color, alpha=0.9,
               #muted_color=c, muted_alpha=0.05,
               legend_label=line_name)
        #
        # plot with matplotlib (to export png)
        plt.plot(x, y, f'-{marker_}', color=color, label=line_name)
        plt.gca().xaxis.grid(True)
        plt.gca().yaxis.grid(True)
        plt.xscale("log" if kwargs.xlog else "linear")
        plt.yscale("log" if kwargs.ylog else "linear")
        plt.xlabel(kwargs.xlabel, fontsize='small')
        plt.ylabel(kwargs.ylabel, fontsize='small')
    plt.gca().legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize='x-small')
    _bokeh_adjust_figure_props(p)
    return p


# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------

####### old code: to remove and tidy up

@dataclass
class CharconvMeta:  # also for atox
    title: str
    subject: str
    function: str
    data_type: FundamentalTypes

    @classmethod
    def make(cls, bm_title: str):
        # eg:
        #   xtoa_c4_write_dec<uint8_t>
        #   xtoa_c4_utoa<uint8_t>
        #   xtoa_c4_xtoa<uint8_t>
        #   xtoa_c4_to_chars<uint8_t>
        #   xtoa_std_to_chars<uint8_t>
        #   xtoa_std_to_string<uint8_t>
        #   xtoa_sprintf<uint8_t>
        #   xtoa_sstream_reuse<uint8_t>
        #   xtoa_sstream<uint8_t>
        rx = re.compile(r'(atox|xtoa|xtoahex|xtoaoct|xtoabin)_(.*?)<(u?int\d+_t)>')
        if not rx.fullmatch(bm_title):
            raise Exception(f"cannot understand bm title: {bm_title}")
        subject = rx.sub(r'\1', bm_title)
        function = rx.sub(r'\2', bm_title)
        data_type = rx.sub(r'\3', bm_title)
        return cls(
            title=bm_title,
            subject=subject,
            function=function.replace("c4_", "c4::").replace("std_", "std::"),
            data_type=FundamentalTypes.make(data_type)
        )

    def checkbox_groups(self):
        return {
            'data_type': [t for t in FundamentalTypes],
        }

    @property
    def shortname(self):
        return self.function

    @property
    def shortparams(self):
        return str(self.data_type.short)

    @property
    def shorttitle(self):
        return f"{self.shortname}<{self.shortparams}>"


@dataclass
class CharconvThreadsMeta:
    function: str
    num_threads: int

    @classmethod
    def make(cls, bm_title: str):
        # eg:
        #   c4_itoa/real_time/threads:4
        rx = re.compile(r'(.*?)/real_time/threads:(\d+)')
        if not rx.fullmatch(bm_title):
            raise Exception(f"cannot understand bm title: {bm_title}")
        function = rx.sub(r'\1', bm_title)
        num_threads = int(rx.sub(r'\2', bm_title))
        return cls(
            function=function.replace("c4_", "c4::").replace("std_", "std::"),
            num_threads=num_threads
        )

    def checkbox_groups(self):
        return {}

    @property
    def shortname(self):
        return self.function

    @property
    def shorttitle(self):
        return self.shortname


def plot_charconv_bars(bm_panel: BenchmarkPanel, panel_title_human: str, outputfile_prefix: str):
    assert os.path.isabs(outputfile_prefix), outputfile_prefix
    for prop in ("mega_bytes_per_second", "cpu_time_ms"):
        ps, ps_ = [], []
        pd = bm_panel.first_run.property_plot_data(prop)
        bar_label = f"{pd.human_name_short}{pd.what_is_better}"
        outfilename = f"{outputfile_prefix}-{prop}"
        for bm in bm_panel.runs:
            bar_names = [m.shorttitle for m in bm.meta]
            bar_values = list(getattr(bm, prop))
            data_type = first(bm.meta).data_type
            # to save each bokeh plot separately and also
            # a grid plot with all of them, we have to plot
            # twice because bokeh does not allow saving twice
            # the same plot from multiple pictures.
            plotit = lambda: plot_benchmark_run_as_bars(bm, title=f"{panel_title_human}: {data_type}\n{bar_label}",
                                                        bar_names=bar_names, bar_values=bar_values, bar_label=bar_label)
            # make one plot to save:
            p, p_ = plotit()
            _bokeh_save_html(f"{outfilename}-{data_type.short}.html", p)
            _plt_save_png_and_clear(f"{outfilename}-{data_type.short}.png")
            # and another to gather:
            p, p_ = plotit()
            ps.append(p)
            ps_.append(p_)
        layout = bkl.gridplot(ps, ncols=2)
        _bokeh_save_html(f"{outfilename}.html", layout)
        # now show
        #bkp.show(layout)


def plot_charconv_threads_(bm_panel: BenchmarkPanel, panel_title_human: str, outputfile_prefix: str):
    assert os.path.isabs(outputfile_prefix), outputfile_prefix
    orig = lambda yprop: lambda bm: list(bm.extract_plot_series(yprop))
    divnt = lambda yprop: lambda bm: [v / n for v, n in bm.extract_plot_series_with_threads(yprop)]
    mulnt = lambda yprop: lambda bm: [v * n for v, n in bm.extract_plot_series_with_threads(yprop)]
    xprop = "threads"
    xpd = bm_panel.first_run.property_plot_data(xprop)
    xlabel = f"{xpd.human_name_short}"
    for yprop, ylog, yget in (
            #("mega_items_per_second", False, orig),
            ("mega_bytes_per_second", False, orig),
            #("iterations", False, divnt),
            #("real_time_ms", True, mulnt),
            ("cpu_time_ms", True, orig),):
        ypd = bm_panel.first_run.property_plot_data(yprop)
        ylabel = f"{ypd.human_name_short}{ypd.what_is_better}"
        p = plot_benchmark_panel_as_lines(
            bm_panel, f"{panel_title_human}\n{ylabel}",
            xget=orig("threads"),
            yget=yget(yprop),
            nameget=lambda bm: first(bm.meta).function,
            ylog=ylog,
            xlabel=xlabel,
            ylabel=ylabel
        )
        name = f"{outputfile_prefix}-lines-{yprop}"
        # save png using matplotlib
        _plt_save_png_and_clear(f"{name}.png")
        # save html using bokeh
        _bokeh_save_html(f"{name}.html", p)
        #bkp.show(p)
    return p


def plot_charconv_threads(json_files, case: str = ""):
    case = f" [{case}]" if case else ""
    dir_ = os.path.dirname(first(json_files))
    panel = BenchmarkPanel(json_files, CharconvThreadsMeta)
    plot_charconv_threads_(panel,
                           f"itoa benchmark: convert 2M 32b integers to string{case}",
                           f"{dir_}/c4core-bm-charconv_threads")


def plot_charconv_xtoa(json_files, case: str = ""):
    case = f" [{case}]" if case else ""
    dir_ = os.path.dirname(first(json_files))
    panel = BenchmarkPanel(json_files, CharconvMeta)
    plot_charconv_bars(panel,
                       f"xtoa benchmark: convert 2M numbers to strings{case}",
                       f"{dir_}/c4core-bm-charconv-xtoa")


def plot_charconv_atox(json_files, case: str = ""):
    case = f" [{case}]" if case else ""
    dir_ = os.path.dirname(first(json_files))
    panel = BenchmarkPanel(json_files, CharconvMeta)
    plot_charconv_bars(panel,
                       f"atox benchmark: convert 2M strings to numbers{case}",
                       f"{dir_}/c4core-bm-charconv-atox")


def threads_data(dir_: str):
    assert os.path.exists(dir_), dir_
    return [
        f"{dir_}/c4core-bm-charconv_threads-c4_write_dec.json",
        f"{dir_}/c4core-bm-charconv_threads-c4_itoa.json",
        f"{dir_}/c4core-bm-charconv_threads-c4_xtoa.json",
        f"{dir_}/c4core-bm-charconv_threads-c4_to_chars.json",
        f"{dir_}/c4core-bm-charconv_threads-fmtlib_format_to.json",
        f"{dir_}/c4core-bm-charconv_threads-std_to_chars.json",
        f"{dir_}/c4core-bm-charconv_threads-snprintf.json",
        f"{dir_}/c4core-bm-charconv_threads-stb_snprintf.json",
        f"{dir_}/c4core-bm-charconv_threads-sstream.json",
        f"{dir_}/c4core-bm-charconv_threads-sstream_naive_reuse.json",
        f"{dir_}/c4core-bm-charconv_threads-sstream_naive.json",
    ]


def xtoa_data(dir_: str):
    assert os.path.exists(dir_), dir_
    return [
        f"{dir_}/c4core-bm-charconv-xtoa-int8.json",
        f"{dir_}/c4core-bm-charconv-xtoa-uint8.json",
        f"{dir_}/c4core-bm-charconv-xtoa-int16.json",
        f"{dir_}/c4core-bm-charconv-xtoa-uint16.json",
        f"{dir_}/c4core-bm-charconv-xtoa-int32.json",
        f"{dir_}/c4core-bm-charconv-xtoa-uint32.json",
        f"{dir_}/c4core-bm-charconv-xtoa-int64.json",
        f"{dir_}/c4core-bm-charconv-xtoa-uint64.json",
    ]


def atox_data(dir_: str):
    assert os.path.exists(dir_), dir_
    return [
        f"{dir_}/c4core-bm-charconv-atox-int8.json",
        f"{dir_}/c4core-bm-charconv-atox-uint8.json",
        f"{dir_}/c4core-bm-charconv-atox-int16.json",
        f"{dir_}/c4core-bm-charconv-atox-uint16.json",
        f"{dir_}/c4core-bm-charconv-atox-int32.json",
        f"{dir_}/c4core-bm-charconv-atox-uint32.json",
        f"{dir_}/c4core-bm-charconv-atox-int64.json",
        f"{dir_}/c4core-bm-charconv-atox-uint64.json",
    ]


def examples_dir():
    this_dir = os.path.dirname(os.path.abspath(__file__))
    exdir = f"{this_dir}/examples"
    assert os.path.exists(exdir), exdir
    return exdir


if __name__ == '__main__':
    xdir = examples_dir()
    #
    plot_charconv_threads(threads_data(f"{xdir}/lines/gcc11.2"), "gcc11.2")
    plot_charconv_threads(threads_data(f"{xdir}/lines/vs2022"), "vs2022")
    #
    plot_charconv_xtoa(xtoa_data(f"{xdir}/bars/xtoa/gcc11.2"), "gcc11.2")
    plot_charconv_xtoa(xtoa_data(f"{xdir}/bars/xtoa/vs2022"), "vs2022")
    #
    plot_charconv_atox(atox_data(f"{xdir}/bars/atox/gcc11.2"), "gcc11.2")
    plot_charconv_atox(atox_data(f"{xdir}/bars/atox/vs2022"), "vs2022")
    #
    exit()


# ------------------------------------------------------------------------------
# ------------------------------------------------------------------------------
# ------------------------------------------------------------------------------


def plot_benchmarks_as_lines(title, *bm, transform=None,
            line_title_transform=None,
            logx=True, logy=True):
    import bokeh
    from bokeh.plotting import figure, output_file, show
    from bokeh.palettes import Dark2_5 as palette
    from bokeh.layouts import row, column
    from bokeh.models import (Legend, LegendItem, CheckboxGroup, CustomJS, Div,
                              RadioGroup, Toggle,
                              ColumnDataSource, DataTable, TableColumn)
    from bokeh.models.markers import marker_types
    #
    ids = entry_ids(*bm, transform=transform)
    colors = itertools.cycle(palette)
    markers = itertools.cycle(marker_types)
    p = figure(title=title,
               x_axis_type="log" if logx else "linear",
               y_axis_type="log" if logy else "linear",
               #background_fill_color="#fafafa",
               plot_width=1000,
               x_axis_label="Number of pixels",
               y_axis_label="Throughput (MB/s)",
               )
    p.toolbar.autohide = True
    #p.toolbar.active_inspect = [hover_tool, crosshair_tool]
    p.toolbar.active_drag = "auto"
    p.toolbar.active_scroll = "auto"
    #
    def dft(v): return v if v else (lambda n: n)
    tr = dft(transform)
    lttr = dft(line_title_transform)
    #
    for results in bm:
        x = [ids[name] for name in results.names]
        y = [bps/1e6 for bps in results.bytes_per_second]
        c = next(colors)
        marker = next(markers)
        next(markers)  # advance two
        line_name = lttr(results.first)
        #legends.append(LegendItem(name=c, label=line_name))
        p.scatter(x, y, marker=marker, size=8, color=c, legend_label=line_name)
        p.line(x, y,
               color=c, alpha=0.9,
               #muted_color=c, muted_alpha=0.05,
               legend_label=line_name)
    p.legend.click_policy = "hide"
    p.legend.label_text_font_size = "10px"
    #
    def input_title(title):
        return Div(text=f"<h3>{title}</h3>")
    inputs = []
    first = bm[0].first.meta
    for k, g in first.checkbox_groups().items():
        cb = CheckboxGroup(labels=[str(v) for v in g],
                           active=[i for i in range(len(g))],
                           inline=True)
        inputs.append(input_title(k))
        inputs.append(cb)
    #
    # https://github.com/bokeh/bokeh/blob/branch-2.3/examples/app/export_csv/main.py
    x_axis_values = [f"{m.num_pixels}px" for m in bm[0].meta]
    table_sources = []
    for i, px in enumerate(x_axis_values):
        c = ColumnDataSource(data={
            'name': [nth(results.filtered_names, i) for results in bm],
            'bytes_per_second': [nth(results.bytes_per_second, i) for results in bm],
            'items_per_second': [nth(results.items_per_second, i) for results in bm],
            'cpu_time': [nth(results.real_time, i) for results in bm],
            'real_time': [nth(results.real_time, i) for results in bm],
            'iterations': [nth(results.iterations, i) for results in bm],
            'threads': [nth(results.threads, i) for results in bm],
        })
        table_sources.append(c)
    selected_x_index = 8  # FIXME (currently 2000 pixels)
    table_source = copy.deepcopy(table_sources[selected_x_index])
    relvalues = Toggle(label="Table: Relative values")
    px_title = input_title("Table: number of pixels")
    px_radiogroup = RadioGroup(labels=x_axis_values, active=selected_x_index)
    table_inputs = [relvalues, px_title, px_radiogroup]
    #
    table_cols = [
        TableColumn(field='name', title='Name'),
        TableColumn(field='bytes_per_second', title='Bytes/second'),
        TableColumn(field='items_per_second', title='Items/second'),
        TableColumn(field='cpu_time', title='CPU time'),
        TableColumn(field='real_time', title='Real time'),
        TableColumn(field='iterations', title='Iterations'),
        TableColumn(field='threads', title='Threads'),
    ]
    data_table = DataTable(source=table_source, columns=table_cols, width=1200)
    callback = CustomJS(args=dict(
        radiogroup=px_radiogroup,
        source=table_source,
        table=table_sources
    ), code="""
    console.log(`active=${radiogroup.active}`);
    /*source.data=table[radiogroup.active];*/
    var nrows = source.data['name'].length;
    var ts = table[radiogroup.active].data;
    var names = ["name", "bytes_per_second", "items_per_second", "cpu_time", "real_time", "iterations", "threads"];
    var ncols = names.length;
    console.log(`names=${names} nrows=${nrows} ncols=${ncols}`);
    for(var i = 0; i < nrows; i++) {
        for(var j = 0; j < ncols; ++j) {
           var name = names[j];
           /*console.log(`i=${i} j=${j} name=${name}`);*/
           source.data[name][i] = ts[name][i];
        }
    }
    source.change.emit();
    """)
    px_radiogroup.js_on_change('active', callback)
    #                        lambda attr, old, new: log(f"attr={attr} old={old} new={new} active={px_radiogroup.active}"))
    #
    layout = column(
        row(column(*inputs), p),
        row(column(*table_inputs), data_table))
    show(layout)


def entry_ids(*bm, transform=None):
    ids = {}
    curr = 0
    for results in bm:
        log(os.path.basename(results.filename), "------------------------------")
        for entry in results.entries:
            log(entry.name)
            if transform is not None:
                ids[entry.name] = transform(entry)
            else:
                if ids.get(entry.name) is None:
                    ids[entry.name] = curr
                    curr += 1
    return ids


class MatrixOrder(_enum):
    row_major = "row_major"
    col_major = "col_major"
    @property
    def short(self):
        return "rm" if self is MatrixOrder.row_major else "cm"
    @classmethod
    def make(cls, s):
        try:
            return {"rm": cls.row_major, "cm": cls.col_major}[s]
        except:
            cls.err_unknown(s)


class MatrixLayout(_enum):
    compact = "compact"
    strided = "strided"
    @classmethod
    def make(cls, s):
        try:
            return cls[s]
        except:
            cls.err_unknown(s)


class DimensionBinding(_enum):
    compile_time = "compile_time"
    run_time = "run_time"
    @property
    def short(self):
        return "ct" if self is DimensionBinding.compile_time else "rt"
    @classmethod
    def make(cls, s):
        try:
            return {"ct": cls.compile_time, "rt": cls.run_time}[s]
        except:
            cls.err_unknown(s)


class MultType(_enum):
    naive = "naive"
    avx2 = "avx2"
    avx2_unroll2 = "avx2_unroll2"
    avx2_unroll4 = "avx2_unroll4"
    avx2_unroll8 = "avx2_unroll8"
    @classmethod
    def make(cls, s):
        try:
            s = s.replace("dotprod_", "").replace("_naive", "")
            return cls[s]
        except:
            cls.err_unknown(s)


class MatrixMult(typing.NamedTuple):
    title: str
    num_pixels: int
    num_channels: int
    num_features: int
    mult_type: MultType
    layout: MatrixLayout
    dim_binding: DimensionBinding
    ret_order: MatrixOrder
    lhs_order: MatrixOrder
    rhs_order: MatrixOrder

    @classmethod
    def make(cls, bm_title: str):
        # eg:
        # mult_naive_strided_ct_rm_cmcm<250, 8, 16>
        # mult_naive_compact_rt_rm_rmrm/4000/8/16
        rxline = r'mult_(.*)[</](\d+)(?:/|, )(\d+)(?:/|, )(\d+).*'
        rxcase = r"(.*)_(compact|strided)_(ct|rt)_(rm|cm)_(rm|cm)(rm|cm)"
        case = re.sub(rxline, r'\1', bm_title)
        return cls(
            title=case,
            num_pixels=int(re.sub(rxline, r'\2', bm_title)),
            num_channels=int(re.sub(rxline, r'\3', bm_title)),
            num_features=int(re.sub(rxline, r'\4', bm_title)),
            mult_type=MultType.make(re.sub(rxcase, r'\1', case)),
            layout=MatrixLayout.make(re.sub(rxcase, r'\2', case)),
            dim_binding=DimensionBinding.make(re.sub(rxcase, r'\3', case)),
            ret_order=MatrixOrder.make(re.sub(rxcase, r'\4', case)),
            lhs_order=MatrixOrder.make(re.sub(rxcase, r'\5', case)),
            rhs_order=MatrixOrder.make(re.sub(rxcase, r'\6', case))
        )

    def comparison_axes(self):
        return ('num_pixels', 'num_channels', 'num_features')

    def checkbox_groups(self):
        return {
            'multiplication method': [t for t in MultType],
            'layout': [t for t in MatrixLayout],
            'dimension': [d for d in DimensionBinding],
            'return matrix ordering': [o for o in MatrixOrder],
            'lhs matrix ordering': [o for o in MatrixOrder],
            'rhs matrix ordering': [o for o in MatrixOrder],
        }

    @property
    def matrix_size(self):
        return self.num_pixels * self.num_channels

    @property
    def classifier_size(self):
        return self.num_channels * self.num_features

    @property
    def shortname(self):
        m = self
        return f"{m.mult_type}/{m.layout}/{m.dim_binding.short}_{m.ret_order.short}_{m.lhs_order.short}{m.rhs_order.short}"

    @property
    def shortparams(self):
        m = self
        return f"{m.num_pixels:04d}px{m.num_channels:02d}ch{m.num_features:02d}ft"

    @property
    def shorttitle(self):
        return f"{self.shortname}/{self.shortparams}"


def _test():
    def expect(v_, attr, val):
        var = getattr(v_, attr)
        if var != val:
            raise Exception(f"{attr}:  expected={val}   actual={var}")
    #
    v = MatrixMult.make("mult_naive_strided_ct_rm_cmcm<250, 8, 16>")
    expect(v, 'title', 'naive_strided_ct_rm_cmcm')
    expect(v, 'num_pixels', 250)
    expect(v, 'num_channels', 8)
    expect(v, 'num_features', 16)
    expect(v, 'mult_type', MultType.naive)
    expect(v, 'layout', MatrixLayout.strided)
    expect(v, 'dim_binding', DimensionBinding.compile_time)
    expect(v, 'ret_order', MatrixOrder.row_major)
    expect(v, 'lhs_order', MatrixOrder.col_major)
    expect(v, 'rhs_order', MatrixOrder.col_major)
    v = MatrixMult.make("mult_dotprod_avx2_compact_rt_cm_rmcm/4000/16/8")
    expect(v, 'title', 'dotprod_avx2_compact_rt_cm_rmcm')
    expect(v, 'num_pixels', 4000)
    expect(v, 'num_channels', 16)
    expect(v, 'num_features', 8)
    expect(v, 'mult_type', MultType.avx2)
    expect(v, 'layout', MatrixLayout.compact)
    expect(v, 'dim_binding', DimensionBinding.run_time)
    expect(v, 'ret_order', MatrixOrder.col_major)
    expect(v, 'lhs_order', MatrixOrder.row_major)
    expect(v, 'rhs_order', MatrixOrder.col_major)

_test()



def formatMBps(value):
    return value / 1e6



if __name__ == '__main__':
    bms = sorted(sys.argv[2:])
    log(bms)
    bms = BenchmarkPanel(bms, bm_meta_cls=MatrixMult.make)
    fm = bms.runs[0].first.meta
    title = f"Classifier multiplication, {fm.num_channels} channels, {fm.num_features} features: throughput (MB/s)"
    bms.plot_all_lines(title)
    exit()
    main()