1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
|
/* This file is part of libmspack.
* (C) 2003-2004 Stuart Caie.
*
* The deflate method was created by Phil Katz. MSZIP is equivalent to the
* deflate method.
*
* libmspack is free software; you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License (LGPL) version 2.1
*
* For further details, see the file COPYING.LIB distributed with libmspack
*/
/* MS-ZIP decompression implementation. */
#include <system.h>
#include <mszip.h>
/* match lengths for literal codes 257.. 285 */
static const unsigned short lit_lengths[29] = {
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27,
31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258
};
/* match offsets for distance codes 0 .. 29 */
static const unsigned short dist_offsets[30] = {
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385,
513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577
};
/* extra bits required for literal codes 257.. 285 */
static const unsigned char lit_extrabits[29] = {
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2,
2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0
};
/* extra bits required for distance codes 0 .. 29 */
static const unsigned char dist_extrabits[30] = {
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6,
6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13
};
/* the order of the bit length Huffman code lengths */
static const unsigned char bitlen_order[19] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};
/* ANDing with bit_mask[n] masks the lower n bits */
static const unsigned short bit_mask[17] = {
0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};
#define STORE_BITS do { \
zip->i_ptr = i_ptr; \
zip->i_end = i_end; \
zip->bit_buffer = bit_buffer; \
zip->bits_left = bits_left; \
} while (0)
#define RESTORE_BITS do { \
i_ptr = zip->i_ptr; \
i_end = zip->i_end; \
bit_buffer = zip->bit_buffer; \
bits_left = zip->bits_left; \
} while (0)
#define ENSURE_BITS(nbits) do { \
while (bits_left < (nbits)) { \
if (i_ptr >= i_end) { \
if (zipd_read_input(zip)) return zip->error; \
i_ptr = zip->i_ptr; \
i_end = zip->i_end; \
} \
bit_buffer |= *i_ptr++ << bits_left; bits_left += 8; \
} \
} while (0)
#define PEEK_BITS(nbits) (bit_buffer & ((1<<(nbits))-1))
#define PEEK_BITS_T(nbits) (bit_buffer & bit_mask[(nbits)])
#define REMOVE_BITS(nbits) ((bit_buffer >>= (nbits)), (bits_left -= (nbits)))
#define READ_BITS(val, nbits) do { \
ENSURE_BITS(nbits); (val) = PEEK_BITS(nbits); REMOVE_BITS(nbits); \
} while (0)
#define READ_BITS_T(val, nbits) do { \
ENSURE_BITS(nbits); (val) = PEEK_BITS_T(nbits); REMOVE_BITS(nbits); \
} while (0)
static int zipd_read_input(struct mszipd_stream *zip) {
int read = zip->sys->read(zip->input, &zip->inbuf[0], (int)zip->inbuf_size);
if (read < 0) return zip->error = MSPACK_ERR_READ;
zip->i_ptr = &zip->inbuf[0];
zip->i_end = &zip->inbuf[read];
return MSPACK_ERR_OK;
}
/* inflate() error codes */
#define INF_ERR_BLOCKTYPE (-1) /* unknown block type */
#define INF_ERR_COMPLEMENT (-2) /* block size complement mismatch */
#define INF_ERR_FLUSH (-3) /* error from flush_window() callback */
#define INF_ERR_BITBUF (-4) /* too many bits in bit buffer */
#define INF_ERR_SYMLENS (-5) /* too many symbols in blocktype 2 header */
#define INF_ERR_BITLENTBL (-6) /* failed to build bitlens huffman table */
#define INF_ERR_LITERALTBL (-7) /* failed to build literals huffman table */
#define INF_ERR_DISTANCETBL (-8) /* failed to build distance huffman table */
#define INF_ERR_BITOVERRUN (-9) /* bitlen RLE code goes over table size */
#define INF_ERR_BADBITLEN (-10) /* invalid bit-length code */
#define INF_ERR_LITCODE (-11) /* out-of-range literal code */
#define INF_ERR_DISTCODE (-12) /* out-of-range distance code */
#define INF_ERR_DISTANCE (-13) /* somehow, distance is beyond 32k */
#define INF_ERR_HUFFSYM (-14) /* out of bits decoding huffman symbol */
/* make_decode_table(nsyms, nbits, length[], table[])
*
* This function was coded by David Tritscher. It builds a fast huffman
* decoding table out of just a canonical huffman code lengths table.
*
* NOTE: this is NOT identical to the make_decode_table() in lzxd.c. This
* one reverses the quick-lookup bit pattern. Bits are read MSB to LSB in LZX,
* but LSB to MSB in MSZIP.
*
* nsyms = total number of symbols in this huffman tree.
* nbits = any symbols with a code length of nbits or less can be decoded
* in one lookup of the table.
* length = A table to get code lengths from [0 to nsyms-1]
* table = The table to fill up with decoded symbols and pointers.
*
* Returns 0 for OK or 1 for error
*/
static int make_decode_table(unsigned int nsyms, unsigned int nbits,
unsigned char *length, unsigned short *table)
{
register unsigned int leaf, reverse, fill;
register unsigned short sym, next_sym;
register unsigned char bit_num;
unsigned int pos = 0; /* the current position in the decode table */
unsigned int table_mask = 1 << nbits;
unsigned int bit_mask = table_mask >> 1; /* don't do 0 length codes */
/* fill entries for codes short enough for a direct mapping */
for (bit_num = 1; bit_num <= nbits; bit_num++) {
for (sym = 0; sym < nsyms; sym++) {
if (length[sym] != bit_num) continue;
/* reverse the significant bits */
fill = length[sym]; reverse = pos >> (nbits - fill); leaf = 0;
do {leaf <<= 1; leaf |= reverse & 1; reverse >>= 1;} while (--fill);
if((pos += bit_mask) > table_mask) return 1; /* table overrun */
/* fill all possible lookups of this symbol with the symbol itself */
fill = bit_mask; next_sym = 1 << bit_num;
do { table[leaf] = sym; leaf += next_sym; } while (--fill);
}
bit_mask >>= 1;
}
/* exit with success if table is now complete */
if (pos == table_mask) return 0;
/* mark all remaining table entries as unused */
for (sym = pos; sym < table_mask; sym++) {
reverse = sym; leaf = 0; fill = nbits;
do { leaf <<= 1; leaf |= reverse & 1; reverse >>= 1; } while (--fill);
table[leaf] = 0xFFFF;
}
/* where should the longer codes be allocated from? */
next_sym = ((table_mask >> 1) < nsyms) ? nsyms : (table_mask >> 1);
/* give ourselves room for codes to grow by up to 16 more bits.
* codes now start at bit nbits+16 and end at (nbits+16-codelength) */
pos <<= 16;
table_mask <<= 16;
bit_mask = 1 << 15;
for (bit_num = nbits+1; bit_num <= MSZIP_MAX_HUFFBITS; bit_num++) {
for (sym = 0; sym < nsyms; sym++) {
if (length[sym] != bit_num) continue;
/* leaf = the first nbits of the code, reversed */
reverse = pos >> 16; leaf = 0; fill = nbits;
do {leaf <<= 1; leaf |= reverse & 1; reverse >>= 1;} while (--fill);
for (fill = 0; fill < (bit_num - nbits); fill++) {
/* if this path hasn't been taken yet, 'allocate' two entries */
if (table[leaf] == 0xFFFF) {
table[(next_sym << 1) ] = 0xFFFF;
table[(next_sym << 1) + 1 ] = 0xFFFF;
table[leaf] = next_sym++;
}
/* follow the path and select either left or right for next bit */
leaf = (table[leaf] << 1) | ((pos >> (15 - fill)) & 1);
}
table[leaf] = sym;
if ((pos += bit_mask) > table_mask) return 1; /* table overflow */
}
bit_mask >>= 1;
}
/* full table? */
return (pos != table_mask) ? 1 : 0;
}
/* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
* bitstream using the stated table and puts it in var.
*/
#define READ_HUFFSYM(tbl, var) do { \
/* huffman symbols can be up to 16 bits long */ \
ENSURE_BITS(MSZIP_MAX_HUFFBITS); \
/* immediate table lookup of [tablebits] bits of the code */ \
sym = zip->tbl##_table[PEEK_BITS(MSZIP_##tbl##_TABLEBITS)]; \
/* is the symbol is longer than [tablebits] bits? (i=node index) */ \
if (sym >= MSZIP_##tbl##_MAXSYMBOLS) { \
/* decode remaining bits by tree traversal */ \
i = MSZIP_##tbl##_TABLEBITS - 1; \
do { \
/* check next bit. error if we run out of bits before decode */ \
if (i++ > MSZIP_MAX_HUFFBITS) { \
D(("out of bits in huffman decode")) \
return INF_ERR_HUFFSYM; \
} \
/* double node index and add 0 (left branch) or 1 (right) */ \
sym = zip->tbl##_table[(sym << 1) | ((bit_buffer >> i) & 1)]; \
/* while we are still in node indicies, not decoded symbols */ \
} while (sym >= MSZIP_##tbl##_MAXSYMBOLS); \
} \
/* result */ \
(var) = sym; \
/* look up the code length of that symbol and discard those bits */ \
i = zip->tbl##_len[sym]; \
REMOVE_BITS(i); \
} while (0)
static int zip_read_lens(struct mszipd_stream *zip) {
/* for the bit buffer and huffman decoding */
register unsigned int bit_buffer;
register int bits_left;
unsigned char *i_ptr, *i_end;
/* bitlen Huffman codes -- immediate lookup, 7 bit max code length */
unsigned short bl_table[(1 << 7)];
unsigned char bl_len[19];
unsigned char lens[MSZIP_LITERAL_MAXSYMBOLS + MSZIP_DISTANCE_MAXSYMBOLS];
unsigned int lit_codes, dist_codes, code, last_code=0, bitlen_codes, i, run;
RESTORE_BITS;
/* read the number of codes */
READ_BITS(lit_codes, 5); lit_codes += 257;
READ_BITS(dist_codes, 5); dist_codes += 1;
READ_BITS(bitlen_codes, 4); bitlen_codes += 4;
if (lit_codes > MSZIP_LITERAL_MAXSYMBOLS) return INF_ERR_SYMLENS;
if (dist_codes > MSZIP_DISTANCE_MAXSYMBOLS) return INF_ERR_SYMLENS;
/* read in the bit lengths in their unusual order */
for (i = 0; i < bitlen_codes; i++) READ_BITS(bl_len[bitlen_order[i]], 3);
while (i < 19) bl_len[bitlen_order[i++]] = 0;
/* create decoding table with an immediate lookup */
if (make_decode_table(19, 7, &bl_len[0], &bl_table[0])) {
return INF_ERR_BITLENTBL;
}
/* read literal / distance code lengths */
for (i = 0; i < (lit_codes + dist_codes); i++) {
/* single-level huffman lookup */
ENSURE_BITS(7);
code = bl_table[PEEK_BITS(7)];
REMOVE_BITS(bl_len[code]);
if (code < 16) lens[i] = last_code = code;
else {
switch (code) {
case 16: READ_BITS(run, 2); run += 3; code = last_code; break;
case 17: READ_BITS(run, 3); run += 3; code = 0; break;
case 18: READ_BITS(run, 7); run += 11; code = 0; break;
default: D(("bad code!: %u", code)) return INF_ERR_BADBITLEN;
}
if ((i + run) > (lit_codes + dist_codes)) return INF_ERR_BITOVERRUN;
while (run--) lens[i++] = code;
i--;
}
}
/* copy LITERAL code lengths and clear any remaining */
i = lit_codes;
zip->sys->copy(&lens[0], &zip->LITERAL_len[0], i);
while (i < MSZIP_LITERAL_MAXSYMBOLS) zip->LITERAL_len[i++] = 0;
i = dist_codes;
zip->sys->copy(&lens[lit_codes], &zip->DISTANCE_len[0], i);
while (i < MSZIP_DISTANCE_MAXSYMBOLS) zip->DISTANCE_len[i++] = 0;
STORE_BITS;
return 0;
}
/* a clean implementation of RFC 1951 / inflate */
static int inflate(struct mszipd_stream *zip) {
unsigned int last_block, block_type, distance, length, this_run, i;
/* for the bit buffer and huffman decoding */
register unsigned int bit_buffer;
register int bits_left;
register unsigned short sym;
unsigned char *i_ptr, *i_end;
RESTORE_BITS;
do {
/* read in last block bit */
READ_BITS(last_block, 1);
/* read in block type */
READ_BITS(block_type, 2);
D(("block_type=%u last_block=%u", block_type, last_block))
if (block_type == 0) {
/* uncompressed block */
unsigned char lens_buf[4];
/* go to byte boundary */
i = bits_left & 7; REMOVE_BITS(i);
/* read 4 bytes of data, emptying the bit-buffer if necessary */
for (i = 0; (bits_left >= 8); i++) {
if (i == 4) return INF_ERR_BITBUF;
lens_buf[i] = PEEK_BITS(8);
REMOVE_BITS(8);
}
if (bits_left != 0) return INF_ERR_BITBUF;
while (i < 4) {
if (i_ptr >= i_end) {
if (zipd_read_input(zip)) return zip->error;
i_ptr = zip->i_ptr;
i_end = zip->i_end;
}
lens_buf[i++] = *i_ptr++;
}
/* get the length and its complement */
length = lens_buf[0] | (lens_buf[1] << 8);
i = lens_buf[2] | (lens_buf[3] << 8);
if (length != (~i & 0xFFFF)) return INF_ERR_COMPLEMENT;
/* read and copy the uncompressed data into the window */
while (length > 0) {
if (i_ptr >= i_end) {
if (zipd_read_input(zip)) return zip->error;
i_ptr = zip->i_ptr;
i_end = zip->i_end;
}
this_run = length;
if (this_run > (unsigned int)(i_end - i_ptr)) this_run = i_end - i_ptr;
if (this_run > (MSZIP_FRAME_SIZE - zip->window_posn))
this_run = MSZIP_FRAME_SIZE - zip->window_posn;
zip->sys->copy(i_ptr, &zip->window[zip->window_posn], this_run);
zip->window_posn += this_run;
i_ptr += this_run;
length -= this_run;
if (zip->window_posn == MSZIP_FRAME_SIZE) {
if (zip->flush_window(zip, MSZIP_FRAME_SIZE)) return INF_ERR_FLUSH;
zip->window_posn = 0;
}
}
}
else if ((block_type == 1) || (block_type == 2)) {
/* Huffman-compressed LZ77 block */
unsigned int window_posn, match_posn, code;
if (block_type == 1) {
/* block with fixed Huffman codes */
i = 0;
while (i < 144) zip->LITERAL_len[i++] = 8;
while (i < 256) zip->LITERAL_len[i++] = 9;
while (i < 280) zip->LITERAL_len[i++] = 7;
while (i < 288) zip->LITERAL_len[i++] = 8;
for (i = 0; i < 32; i++) zip->DISTANCE_len[i] = 5;
}
else {
/* block with dynamic Huffman codes */
STORE_BITS;
if ((i = zip_read_lens(zip))) return i;
RESTORE_BITS;
}
/* now huffman lengths are read for either kind of block,
* create huffman decoding tables */
if (make_decode_table(MSZIP_LITERAL_MAXSYMBOLS, MSZIP_LITERAL_TABLEBITS,
&zip->LITERAL_len[0], &zip->LITERAL_table[0]))
{
return INF_ERR_LITERALTBL;
}
if (make_decode_table(MSZIP_DISTANCE_MAXSYMBOLS,MSZIP_DISTANCE_TABLEBITS,
&zip->DISTANCE_len[0], &zip->DISTANCE_table[0]))
{
return INF_ERR_DISTANCETBL;
}
/* decode forever until end of block code */
window_posn = zip->window_posn;
while (1) {
READ_HUFFSYM(LITERAL, code);
if (code < 256) {
zip->window[window_posn++] = (unsigned char) code;
if (window_posn == MSZIP_FRAME_SIZE) {
if (zip->flush_window(zip, MSZIP_FRAME_SIZE)) return INF_ERR_FLUSH;
window_posn = 0;
}
}
else if (code == 256) {
/* END OF BLOCK CODE: loop break point */
break;
}
else {
code -= 257;
if (code > 29) return INF_ERR_LITCODE;
READ_BITS_T(length, lit_extrabits[code]);
length += lit_lengths[code];
READ_HUFFSYM(DISTANCE, code);
if (code > 30) return INF_ERR_DISTCODE;
READ_BITS_T(distance, dist_extrabits[code]);
distance += dist_offsets[code];
/* match position is window position minus distance. If distance
* is more than window position numerically, it must 'wrap
* around' the frame size. */
match_posn = ((distance > window_posn) ? MSZIP_FRAME_SIZE : 0)
+ window_posn - distance;
/* copy match */
if (length < 12) {
/* short match, use slower loop but no loop setup code */
while (length--) {
zip->window[window_posn++] = zip->window[match_posn++];
match_posn &= MSZIP_FRAME_SIZE - 1;
if (window_posn == MSZIP_FRAME_SIZE) {
if (zip->flush_window(zip, MSZIP_FRAME_SIZE))
return INF_ERR_FLUSH;
window_posn = 0;
}
}
}
else {
/* longer match, use faster loop but with setup expense */
unsigned char *runsrc, *rundest;
do {
this_run = length;
if ((match_posn + this_run) > MSZIP_FRAME_SIZE)
this_run = MSZIP_FRAME_SIZE - match_posn;
if ((window_posn + this_run) > MSZIP_FRAME_SIZE)
this_run = MSZIP_FRAME_SIZE - window_posn;
rundest = &zip->window[window_posn]; window_posn += this_run;
runsrc = &zip->window[match_posn]; match_posn += this_run;
length -= this_run;
while (this_run--) *rundest++ = *runsrc++;
/* flush if necessary */
if (window_posn == MSZIP_FRAME_SIZE) {
if (zip->flush_window(zip, MSZIP_FRAME_SIZE))
return INF_ERR_FLUSH;
window_posn = 0;
}
if (match_posn == MSZIP_FRAME_SIZE) match_posn = 0;
} while (length > 0);
}
} /* else (code >= 257) */
} /* while (forever) -- break point at 'code == 256' */
zip->window_posn = window_posn;
}
else {
/* block_type == 3 -- bad block type */
return INF_ERR_BLOCKTYPE;
}
} while (!last_block);
/* flush the remaining data */
if (zip->window_posn) {
if (zip->flush_window(zip, zip->window_posn)) return INF_ERR_FLUSH;
}
STORE_BITS;
/* return success */
return 0;
}
/* inflate() calls this whenever the window should be flushed. As
* MSZIP only expands to the size of the window, the implementation used
* simply keeps track of the amount of data flushed, and if more than 32k
* is flushed, an error is raised.
*/
static int mszipd_flush_window(struct mszipd_stream *zip,
unsigned int data_flushed)
{
zip->bytes_output += data_flushed;
if (zip->bytes_output > MSZIP_FRAME_SIZE) {
D(("overflow: %u bytes flushed, total is now %u",
data_flushed, zip->bytes_output))
return 1;
}
return 0;
}
struct mszipd_stream *mszipd_init(struct mspack_system *system,
struct mspack_file *input,
struct mspack_file *output,
int input_buffer_size,
int repair_mode)
{
struct mszipd_stream *zip;
if (!system) return NULL;
input_buffer_size = (input_buffer_size + 1) & -2;
if (!input_buffer_size) return NULL;
/* allocate decompression state */
if (!(zip = system->alloc(system, sizeof(struct mszipd_stream)))) {
return NULL;
}
/* allocate input buffer */
zip->inbuf = system->alloc(system, (size_t) input_buffer_size);
if (!zip->inbuf) {
system->free(zip);
return NULL;
}
/* initialise decompression state */
zip->sys = system;
zip->input = input;
zip->output = output;
zip->inbuf_size = input_buffer_size;
zip->error = MSPACK_ERR_OK;
zip->repair_mode = repair_mode;
zip->flush_window = &mszipd_flush_window;
zip->i_ptr = zip->i_end = &zip->inbuf[0];
zip->o_ptr = zip->o_end = NULL;
zip->bit_buffer = 0; zip->bits_left = 0;
return zip;
}
int mszipd_decompress(struct mszipd_stream *zip, off_t out_bytes) {
/* for the bit buffer */
register unsigned int bit_buffer;
register int bits_left;
unsigned char *i_ptr, *i_end;
int i, state, error;
/* easy answers */
if (!zip || (out_bytes < 0)) return MSPACK_ERR_ARGS;
if (zip->error) return zip->error;
/* flush out any stored-up bytes before we begin */
i = zip->o_end - zip->o_ptr;
if ((off_t) i > out_bytes) i = (int) out_bytes;
if (i) {
if (zip->sys->write(zip->output, zip->o_ptr, i) != i) {
return zip->error = MSPACK_ERR_WRITE;
}
zip->o_ptr += i;
out_bytes -= i;
}
if (out_bytes == 0) return MSPACK_ERR_OK;
while (out_bytes > 0) {
/* unpack another block */
RESTORE_BITS;
/* skip to next read 'CK' header */
i = bits_left & 7; REMOVE_BITS(i); /* align to bytestream */
state = 0;
do {
READ_BITS(i, 8);
if (i == 'C') state = 1;
else if ((state == 1) && (i == 'K')) state = 2;
else state = 0;
} while (state != 2);
/* inflate a block, repair and realign if necessary */
zip->window_posn = 0;
zip->bytes_output = 0;
STORE_BITS;
if ((error = inflate(zip))) {
D(("inflate error %d", i))
if (zip->repair_mode) {
zip->sys->message(NULL, "MSZIP error, %u bytes of data lost.",
MSZIP_FRAME_SIZE - zip->bytes_output);
for (i = zip->bytes_output; i < MSZIP_FRAME_SIZE; i++) {
zip->window[i] = '\0';
}
zip->bytes_output = MSZIP_FRAME_SIZE;
}
else {
return zip->error = (error > 0) ? error : MSPACK_ERR_DECRUNCH;
}
}
zip->o_ptr = &zip->window[0];
zip->o_end = &zip->o_ptr[zip->bytes_output];
/* write a frame */
i = (out_bytes < (off_t)zip->bytes_output) ?
(int)out_bytes : zip->bytes_output;
if (zip->sys->write(zip->output, zip->o_ptr, i) != i) {
return zip->error = MSPACK_ERR_WRITE;
}
/* mspack errors (i.e. read errors) are fatal and can't be recovered */
if ((error > 0) && zip->repair_mode) return error;
zip->o_ptr += i;
out_bytes -= i;
}
if (out_bytes) {
D(("bytes left to output"))
return zip->error = MSPACK_ERR_DECRUNCH;
}
return MSPACK_ERR_OK;
}
void mszipd_free(struct mszipd_stream *zip) {
struct mspack_system *sys;
if (zip) {
sys = zip->sys;
sys->free(zip->inbuf);
sys->free(zip);
}
}
|