File: mszipd.c

package info (click to toggle)
cabextract 1.2-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 932 kB
  • ctags: 966
  • sloc: ansic: 6,138; sh: 457; perl: 275; makefile: 68
file content (647 lines) | stat: -rw-r--r-- 22,589 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
/* This file is part of libmspack.
 * (C) 2003-2004 Stuart Caie.
 *
 * The deflate method was created by Phil Katz. MSZIP is equivalent to the
 * deflate method.
 *
 * libmspack is free software; you can redistribute it and/or modify it under
 * the terms of the GNU Lesser General Public License (LGPL) version 2.1
 *
 * For further details, see the file COPYING.LIB distributed with libmspack
 */

/* MS-ZIP decompression implementation. */

#include <system.h>
#include <mszip.h>

/* match lengths for literal codes 257.. 285 */
static const unsigned short lit_lengths[29] = {
  3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27,
  31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258
};

/* match offsets for distance codes 0 .. 29 */
static const unsigned short dist_offsets[30] = {
  1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385,
  513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577
};

/* extra bits required for literal codes 257.. 285 */
static const unsigned char lit_extrabits[29] = {
  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2,
  2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0
};

/* extra bits required for distance codes 0 .. 29 */
static const unsigned char dist_extrabits[30] = {
  0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6,
  6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13
};

/* the order of the bit length Huffman code lengths */
static const unsigned char bitlen_order[19] = {
  16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};

/* ANDing with bit_mask[n] masks the lower n bits */
static const unsigned short bit_mask[17] = {
 0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};

#define STORE_BITS do {                                                 \
  zip->i_ptr      = i_ptr;                                              \
  zip->i_end      = i_end;                                              \
  zip->bit_buffer = bit_buffer;                                         \
  zip->bits_left  = bits_left;                                          \
} while (0)

#define RESTORE_BITS do {                                               \
  i_ptr      = zip->i_ptr;                                              \
  i_end      = zip->i_end;                                              \
  bit_buffer = zip->bit_buffer;                                         \
  bits_left  = zip->bits_left;                                          \
} while (0)

#define ENSURE_BITS(nbits) do {                                         \
  while (bits_left < (nbits)) {                                         \
    if (i_ptr >= i_end) {                                               \
      if (zipd_read_input(zip)) return zip->error;                      \
      i_ptr = zip->i_ptr;                                               \
      i_end = zip->i_end;                                               \
    }                                                                   \
    bit_buffer |= *i_ptr++ << bits_left; bits_left  += 8;               \
  }                                                                     \
} while (0)

#define PEEK_BITS(nbits)   (bit_buffer & ((1<<(nbits))-1))
#define PEEK_BITS_T(nbits) (bit_buffer & bit_mask[(nbits)])

#define REMOVE_BITS(nbits) ((bit_buffer >>= (nbits)), (bits_left -= (nbits)))

#define READ_BITS(val, nbits) do {                                      \
  ENSURE_BITS(nbits); (val) = PEEK_BITS(nbits); REMOVE_BITS(nbits);     \
} while (0)

#define READ_BITS_T(val, nbits) do {                                    \
  ENSURE_BITS(nbits); (val) = PEEK_BITS_T(nbits); REMOVE_BITS(nbits);   \
} while (0)

static int zipd_read_input(struct mszipd_stream *zip) {
  int read = zip->sys->read(zip->input, &zip->inbuf[0], (int)zip->inbuf_size);
  if (read < 0) return zip->error = MSPACK_ERR_READ;
  zip->i_ptr = &zip->inbuf[0];
  zip->i_end = &zip->inbuf[read];

  return MSPACK_ERR_OK;
}

/* inflate() error codes */
#define INF_ERR_BLOCKTYPE   (-1)  /* unknown block type                      */
#define INF_ERR_COMPLEMENT  (-2)  /* block size complement mismatch          */
#define INF_ERR_FLUSH       (-3)  /* error from flush_window() callback      */
#define INF_ERR_BITBUF      (-4)  /* too many bits in bit buffer             */
#define INF_ERR_SYMLENS     (-5)  /* too many symbols in blocktype 2 header  */
#define INF_ERR_BITLENTBL   (-6)  /* failed to build bitlens huffman table   */
#define INF_ERR_LITERALTBL  (-7)  /* failed to build literals huffman table  */
#define INF_ERR_DISTANCETBL (-8)  /* failed to build distance huffman table  */
#define INF_ERR_BITOVERRUN  (-9)  /* bitlen RLE code goes over table size    */
#define INF_ERR_BADBITLEN   (-10) /* invalid bit-length code                 */
#define INF_ERR_LITCODE     (-11) /* out-of-range literal code               */
#define INF_ERR_DISTCODE    (-12) /* out-of-range distance code              */
#define INF_ERR_DISTANCE    (-13) /* somehow, distance is beyond 32k         */
#define INF_ERR_HUFFSYM     (-14) /* out of bits decoding huffman symbol     */

/* make_decode_table(nsyms, nbits, length[], table[])
 *
 * This function was coded by David Tritscher. It builds a fast huffman
 * decoding table out of just a canonical huffman code lengths table.
 *
 * NOTE: this is NOT identical to the make_decode_table() in lzxd.c. This
 * one reverses the quick-lookup bit pattern. Bits are read MSB to LSB in LZX,
 * but LSB to MSB in MSZIP.
 *
 * nsyms  = total number of symbols in this huffman tree.
 * nbits  = any symbols with a code length of nbits or less can be decoded
 *          in one lookup of the table.
 * length = A table to get code lengths from [0 to nsyms-1]
 * table  = The table to fill up with decoded symbols and pointers.
 *
 * Returns 0 for OK or 1 for error
 */
static int make_decode_table(unsigned int nsyms, unsigned int nbits,
			     unsigned char *length, unsigned short *table)
{
  register unsigned int leaf, reverse, fill;
  register unsigned short sym, next_sym;
  register unsigned char bit_num;
  unsigned int pos         = 0; /* the current position in the decode table */
  unsigned int table_mask  = 1 << nbits;
  unsigned int bit_mask    = table_mask >> 1; /* don't do 0 length codes */

  /* fill entries for codes short enough for a direct mapping */
  for (bit_num = 1; bit_num <= nbits; bit_num++) {
    for (sym = 0; sym < nsyms; sym++) {
      if (length[sym] != bit_num) continue;

      /* reverse the significant bits */
      fill = length[sym]; reverse = pos >> (nbits - fill); leaf = 0;
      do {leaf <<= 1; leaf |= reverse & 1; reverse >>= 1;} while (--fill);

      if((pos += bit_mask) > table_mask) return 1; /* table overrun */

      /* fill all possible lookups of this symbol with the symbol itself */
      fill = bit_mask; next_sym = 1 << bit_num;
      do { table[leaf] = sym; leaf += next_sym; } while (--fill);
    }
    bit_mask >>= 1;
  }

  /* exit with success if table is now complete */
  if (pos == table_mask) return 0;

  /* mark all remaining table entries as unused */
  for (sym = pos; sym < table_mask; sym++) {
    reverse = sym; leaf = 0; fill = nbits;
    do { leaf <<= 1; leaf |= reverse & 1; reverse >>= 1; } while (--fill);
    table[leaf] = 0xFFFF;
  }

  /* where should the longer codes be allocated from? */
  next_sym = ((table_mask >> 1) < nsyms) ? nsyms : (table_mask >> 1);

  /* give ourselves room for codes to grow by up to 16 more bits.
   * codes now start at bit nbits+16 and end at (nbits+16-codelength) */
  pos <<= 16;
  table_mask <<= 16;
  bit_mask = 1 << 15;

  for (bit_num = nbits+1; bit_num <= MSZIP_MAX_HUFFBITS; bit_num++) {
    for (sym = 0; sym < nsyms; sym++) {
      if (length[sym] != bit_num) continue;

      /* leaf = the first nbits of the code, reversed */
      reverse = pos >> 16; leaf = 0; fill = nbits;
      do {leaf <<= 1; leaf |= reverse & 1; reverse >>= 1;} while (--fill);

      for (fill = 0; fill < (bit_num - nbits); fill++) {
	/* if this path hasn't been taken yet, 'allocate' two entries */
	if (table[leaf] == 0xFFFF) {
	  table[(next_sym << 1)     ] = 0xFFFF;
	  table[(next_sym << 1) + 1 ] = 0xFFFF;
	  table[leaf] = next_sym++;
	}
	/* follow the path and select either left or right for next bit */
	leaf = (table[leaf] << 1) | ((pos >> (15 - fill)) & 1);
      }
      table[leaf] = sym;

      if ((pos += bit_mask) > table_mask) return 1; /* table overflow */
    }
    bit_mask >>= 1;
  }

  /* full table? */
  return (pos != table_mask) ? 1 : 0;
}

/* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
 * bitstream using the stated table and puts it in var.
 */
#define READ_HUFFSYM(tbl, var) do {                                     \
  /* huffman symbols can be up to 16 bits long */                       \
  ENSURE_BITS(MSZIP_MAX_HUFFBITS);                                      \
  /* immediate table lookup of [tablebits] bits of the code */          \
  sym = zip->tbl##_table[PEEK_BITS(MSZIP_##tbl##_TABLEBITS)];		\
  /* is the symbol is longer than [tablebits] bits? (i=node index) */   \
  if (sym >= MSZIP_##tbl##_MAXSYMBOLS) {                                \
    /* decode remaining bits by tree traversal */                       \
    i = MSZIP_##tbl##_TABLEBITS - 1;					\
    do {                                                                \
      /* check next bit. error if we run out of bits before decode */	\
      if (i++ > MSZIP_MAX_HUFFBITS) {					\
        D(("out of bits in huffman decode"))                            \
        return INF_ERR_HUFFSYM;                                         \
      }                                                                 \
      /* double node index and add 0 (left branch) or 1 (right) */	\
      sym = zip->tbl##_table[(sym << 1) | ((bit_buffer >> i) & 1)];	\
      /* while we are still in node indicies, not decoded symbols */    \
    } while (sym >= MSZIP_##tbl##_MAXSYMBOLS);                          \
  }                                                                     \
  /* result */                                                          \
  (var) = sym;                                                          \
  /* look up the code length of that symbol and discard those bits */   \
  i = zip->tbl##_len[sym];                                              \
  REMOVE_BITS(i);                                                       \
} while (0)

static int zip_read_lens(struct mszipd_stream *zip) {
  /* for the bit buffer and huffman decoding */
  register unsigned int bit_buffer;
  register int bits_left;
  unsigned char *i_ptr, *i_end;

  /* bitlen Huffman codes -- immediate lookup, 7 bit max code length */
  unsigned short bl_table[(1 << 7)];
  unsigned char bl_len[19];

  unsigned char lens[MSZIP_LITERAL_MAXSYMBOLS + MSZIP_DISTANCE_MAXSYMBOLS];
  unsigned int lit_codes, dist_codes, code, last_code=0, bitlen_codes, i, run;

  RESTORE_BITS;

  /* read the number of codes */
  READ_BITS(lit_codes,    5); lit_codes    += 257;
  READ_BITS(dist_codes,   5); dist_codes   += 1;
  READ_BITS(bitlen_codes, 4); bitlen_codes += 4;
  if (lit_codes  > MSZIP_LITERAL_MAXSYMBOLS)  return INF_ERR_SYMLENS;
  if (dist_codes > MSZIP_DISTANCE_MAXSYMBOLS) return INF_ERR_SYMLENS;

  /* read in the bit lengths in their unusual order */
  for (i = 0; i < bitlen_codes; i++) READ_BITS(bl_len[bitlen_order[i]], 3);
  while (i < 19) bl_len[bitlen_order[i++]] = 0;

  /* create decoding table with an immediate lookup */
  if (make_decode_table(19, 7, &bl_len[0], &bl_table[0])) {
    return INF_ERR_BITLENTBL;
  }

  /* read literal / distance code lengths */
  for (i = 0; i < (lit_codes + dist_codes); i++) {
    /* single-level huffman lookup */
    ENSURE_BITS(7);
    code = bl_table[PEEK_BITS(7)];
    REMOVE_BITS(bl_len[code]);

    if (code < 16) lens[i] = last_code = code;
    else {
      switch (code) {
      case 16: READ_BITS(run, 2); run += 3;  code = last_code; break;
      case 17: READ_BITS(run, 3); run += 3;  code = 0;         break;
      case 18: READ_BITS(run, 7); run += 11; code = 0;         break;
      default: D(("bad code!: %u", code)) return INF_ERR_BADBITLEN;
      }
      if ((i + run) > (lit_codes + dist_codes)) return INF_ERR_BITOVERRUN;
      while (run--) lens[i++] = code;
      i--;
    }
  }

  /* copy LITERAL code lengths and clear any remaining */
  i = lit_codes;
  zip->sys->copy(&lens[0], &zip->LITERAL_len[0], i);
  while (i < MSZIP_LITERAL_MAXSYMBOLS) zip->LITERAL_len[i++] = 0;

  i = dist_codes;
  zip->sys->copy(&lens[lit_codes], &zip->DISTANCE_len[0], i);
  while (i < MSZIP_DISTANCE_MAXSYMBOLS) zip->DISTANCE_len[i++] = 0;

  STORE_BITS;
  return 0;
}

/* a clean implementation of RFC 1951 / inflate */
static int inflate(struct mszipd_stream *zip) {
  unsigned int last_block, block_type, distance, length, this_run, i;

  /* for the bit buffer and huffman decoding */
  register unsigned int bit_buffer;
  register int bits_left;
  register unsigned short sym;
  unsigned char *i_ptr, *i_end;

  RESTORE_BITS;

  do {
    /* read in last block bit */
    READ_BITS(last_block, 1);

    /* read in block type */
    READ_BITS(block_type, 2);
    D(("block_type=%u last_block=%u", block_type, last_block))

    if (block_type == 0) {
      /* uncompressed block */
      unsigned char lens_buf[4];

      /* go to byte boundary */
      i = bits_left & 7; REMOVE_BITS(i);

      /* read 4 bytes of data, emptying the bit-buffer if necessary */
      for (i = 0; (bits_left >= 8); i++) {
	if (i == 4) return INF_ERR_BITBUF;
	lens_buf[i] = PEEK_BITS(8);
	REMOVE_BITS(8);
      }
      if (bits_left != 0) return INF_ERR_BITBUF;
      while (i < 4) {
	if (i_ptr >= i_end) {
	  if (zipd_read_input(zip)) return zip->error;
	  i_ptr = zip->i_ptr;
	  i_end = zip->i_end;
	}
	lens_buf[i++] = *i_ptr++;
      }

      /* get the length and its complement */
      length = lens_buf[0] | (lens_buf[1] << 8);
      i      = lens_buf[2] | (lens_buf[3] << 8);
      if (length != (~i & 0xFFFF)) return INF_ERR_COMPLEMENT;

      /* read and copy the uncompressed data into the window */
      while (length > 0) {
	if (i_ptr >= i_end) {
	  if (zipd_read_input(zip)) return zip->error;
	  i_ptr = zip->i_ptr;
	  i_end = zip->i_end;
	}

	this_run = length;
	if (this_run > (unsigned int)(i_end - i_ptr)) this_run = i_end - i_ptr;
	if (this_run > (MSZIP_FRAME_SIZE - zip->window_posn))
	  this_run = MSZIP_FRAME_SIZE - zip->window_posn;

	zip->sys->copy(i_ptr, &zip->window[zip->window_posn], this_run);
	zip->window_posn += this_run;
	i_ptr    += this_run;
	length   -= this_run;

	if (zip->window_posn == MSZIP_FRAME_SIZE) {
	  if (zip->flush_window(zip, MSZIP_FRAME_SIZE)) return INF_ERR_FLUSH;
	  zip->window_posn = 0;
	}
      }
    }
    else if ((block_type == 1) || (block_type == 2)) {
      /* Huffman-compressed LZ77 block */
      unsigned int window_posn, match_posn, code;

      if (block_type == 1) {
	/* block with fixed Huffman codes */
	i = 0;
	while (i < 144) zip->LITERAL_len[i++] = 8;
	while (i < 256) zip->LITERAL_len[i++] = 9;
	while (i < 280) zip->LITERAL_len[i++] = 7;
	while (i < 288) zip->LITERAL_len[i++] = 8;
	for (i = 0; i < 32; i++) zip->DISTANCE_len[i] = 5;
      }
      else {
	/* block with dynamic Huffman codes */
	STORE_BITS;
	if ((i = zip_read_lens(zip))) return i;
	RESTORE_BITS;
      }

      /* now huffman lengths are read for either kind of block, 
       * create huffman decoding tables */
      if (make_decode_table(MSZIP_LITERAL_MAXSYMBOLS, MSZIP_LITERAL_TABLEBITS,
			    &zip->LITERAL_len[0], &zip->LITERAL_table[0]))
      {
	return INF_ERR_LITERALTBL;
      }

      if (make_decode_table(MSZIP_DISTANCE_MAXSYMBOLS,MSZIP_DISTANCE_TABLEBITS,
			    &zip->DISTANCE_len[0], &zip->DISTANCE_table[0]))
      {
	return INF_ERR_DISTANCETBL;
      }

      /* decode forever until end of block code */
      window_posn = zip->window_posn;
      while (1) {
	READ_HUFFSYM(LITERAL, code);
	if (code < 256) {
	  zip->window[window_posn++] = (unsigned char) code;
	  if (window_posn == MSZIP_FRAME_SIZE) {
	    if (zip->flush_window(zip, MSZIP_FRAME_SIZE)) return INF_ERR_FLUSH;
	    window_posn = 0;
	  }
	}
	else if (code == 256) {
	  /* END OF BLOCK CODE: loop break point */
	  break;
	}
	else {
	  code -= 257;
	  if (code > 29) return INF_ERR_LITCODE;
	  READ_BITS_T(length, lit_extrabits[code]);
	  length += lit_lengths[code];

	  READ_HUFFSYM(DISTANCE, code);
	  if (code > 30) return INF_ERR_DISTCODE;
	  READ_BITS_T(distance, dist_extrabits[code]);
	  distance += dist_offsets[code];

	  /* match position is window position minus distance. If distance
	   * is more than window position numerically, it must 'wrap
	   * around' the frame size. */ 
	  match_posn = ((distance > window_posn) ? MSZIP_FRAME_SIZE : 0)
	    + window_posn - distance;

	  /* copy match */
	  if (length < 12) {
	    /* short match, use slower loop but no loop setup code */
	    while (length--) {
	      zip->window[window_posn++] = zip->window[match_posn++];
	      match_posn &= MSZIP_FRAME_SIZE - 1;

	      if (window_posn == MSZIP_FRAME_SIZE) {
		if (zip->flush_window(zip, MSZIP_FRAME_SIZE))
		  return INF_ERR_FLUSH;
		window_posn = 0;
	      }
	    }
	  }
	  else {
	    /* longer match, use faster loop but with setup expense */
	    unsigned char *runsrc, *rundest;
	    do {
	      this_run = length;
	      if ((match_posn + this_run) > MSZIP_FRAME_SIZE)
		this_run = MSZIP_FRAME_SIZE - match_posn;
	      if ((window_posn + this_run) > MSZIP_FRAME_SIZE)
		this_run = MSZIP_FRAME_SIZE - window_posn;

	      rundest = &zip->window[window_posn]; window_posn += this_run;
	      runsrc  = &zip->window[match_posn];  match_posn  += this_run;
	      length -= this_run;
	      while (this_run--) *rundest++ = *runsrc++;

	      /* flush if necessary */
	      if (window_posn == MSZIP_FRAME_SIZE) {
		if (zip->flush_window(zip, MSZIP_FRAME_SIZE))
		  return INF_ERR_FLUSH;
		window_posn = 0;
	      }
	      if (match_posn == MSZIP_FRAME_SIZE) match_posn = 0;
	    } while (length > 0);
	  }

	} /* else (code >= 257) */

      } /* while (forever) -- break point at 'code == 256' */
      zip->window_posn = window_posn;
    }
    else {
      /* block_type == 3 -- bad block type */
      return INF_ERR_BLOCKTYPE;
    }
  } while (!last_block);

  /* flush the remaining data */
  if (zip->window_posn) {
    if (zip->flush_window(zip, zip->window_posn)) return INF_ERR_FLUSH;
  }
  STORE_BITS;

  /* return success */
  return 0;
}

/* inflate() calls this whenever the window should be flushed. As
 * MSZIP only expands to the size of the window, the implementation used
 * simply keeps track of the amount of data flushed, and if more than 32k
 * is flushed, an error is raised.
 */  
static int mszipd_flush_window(struct mszipd_stream *zip,
			       unsigned int data_flushed)
{
  zip->bytes_output += data_flushed;
  if (zip->bytes_output > MSZIP_FRAME_SIZE) {
    D(("overflow: %u bytes flushed, total is now %u",
       data_flushed, zip->bytes_output))
    return 1;
  }
  return 0;
}

struct mszipd_stream *mszipd_init(struct mspack_system *system,
				  struct mspack_file *input,
				  struct mspack_file *output,
				  int input_buffer_size,
				  int repair_mode)
{
  struct mszipd_stream *zip;

  if (!system) return NULL;

  input_buffer_size = (input_buffer_size + 1) & -2;
  if (!input_buffer_size) return NULL;

  /* allocate decompression state */
  if (!(zip = system->alloc(system, sizeof(struct mszipd_stream)))) {
    return NULL;
  }

  /* allocate input buffer */
  zip->inbuf  = system->alloc(system, (size_t) input_buffer_size);
  if (!zip->inbuf) {
    system->free(zip);
    return NULL;
  }

  /* initialise decompression state */
  zip->sys             = system;
  zip->input           = input;
  zip->output          = output;
  zip->inbuf_size      = input_buffer_size;
  zip->error           = MSPACK_ERR_OK;
  zip->repair_mode     = repair_mode;
  zip->flush_window    = &mszipd_flush_window;

  zip->i_ptr = zip->i_end = &zip->inbuf[0];
  zip->o_ptr = zip->o_end = NULL;
  zip->bit_buffer = 0; zip->bits_left = 0;
  return zip;
}

int mszipd_decompress(struct mszipd_stream *zip, off_t out_bytes) {
  /* for the bit buffer */
  register unsigned int bit_buffer;
  register int bits_left;
  unsigned char *i_ptr, *i_end;

  int i, state, error;

  /* easy answers */
  if (!zip || (out_bytes < 0)) return MSPACK_ERR_ARGS;
  if (zip->error) return zip->error;

  /* flush out any stored-up bytes before we begin */
  i = zip->o_end - zip->o_ptr;
  if ((off_t) i > out_bytes) i = (int) out_bytes;
  if (i) {
    if (zip->sys->write(zip->output, zip->o_ptr, i) != i) {
      return zip->error = MSPACK_ERR_WRITE;
    }
    zip->o_ptr  += i;
    out_bytes   -= i;
  }
  if (out_bytes == 0) return MSPACK_ERR_OK;


  while (out_bytes > 0) {
    /* unpack another block */
    RESTORE_BITS;

    /* skip to next read 'CK' header */
    i = bits_left & 7; REMOVE_BITS(i); /* align to bytestream */
    state = 0;
    do {
      READ_BITS(i, 8);
      if (i == 'C') state = 1;
      else if ((state == 1) && (i == 'K')) state = 2;
      else state = 0;
    } while (state != 2);

    /* inflate a block, repair and realign if necessary */
    zip->window_posn = 0;
    zip->bytes_output = 0;
    STORE_BITS;
    if ((error = inflate(zip))) {
      D(("inflate error %d", i))
      if (zip->repair_mode) {
	zip->sys->message(NULL, "MSZIP error, %u bytes of data lost.",
			  MSZIP_FRAME_SIZE - zip->bytes_output);
	for (i = zip->bytes_output; i < MSZIP_FRAME_SIZE; i++) {
	  zip->window[i] = '\0';
	}
	zip->bytes_output = MSZIP_FRAME_SIZE;
      }
      else {
	return zip->error = (error > 0) ? error : MSPACK_ERR_DECRUNCH;
      }
    }
    zip->o_ptr = &zip->window[0];
    zip->o_end = &zip->o_ptr[zip->bytes_output];

    /* write a frame */
    i = (out_bytes < (off_t)zip->bytes_output) ?
      (int)out_bytes : zip->bytes_output;
    if (zip->sys->write(zip->output, zip->o_ptr, i) != i) {
      return zip->error = MSPACK_ERR_WRITE;
    }

    /* mspack errors (i.e. read errors) are fatal and can't be recovered */
    if ((error > 0) && zip->repair_mode) return error;

    zip->o_ptr  += i;
    out_bytes   -= i;
  }

  if (out_bytes) {
    D(("bytes left to output"))
    return zip->error = MSPACK_ERR_DECRUNCH;
  }
  return MSPACK_ERR_OK;
}

void mszipd_free(struct mszipd_stream *zip) {
  struct mspack_system *sys;
  if (zip) {
    sys = zip->sys;
    sys->free(zip->inbuf);
    sys->free(zip);
  }
}