1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
|
#include "Cleanup.hh"
#include "algorithms/expand_power.hh"
using namespace cadabra;
expand_power::expand_power(const Kernel& k, Ex& e)
: Algorithm(k, e)
{
}
bool expand_power::can_apply(iterator it)
{
if(*it->name=="\\pow") {
sibling_iterator exponent=tr.begin(it);
++exponent;
if(exponent->is_integer())
return true;
}
return false;
}
Algorithm::result_t expand_power::apply(iterator& it)
{
iterator argument=tr.begin(it);
sibling_iterator exponent=tr.begin(it);
++exponent;
int num=to_long(*exponent->multiplier);
if(num<=1)
return result_t::l_no_action;
iterator prodn=tr.insert(argument,str_node("\\prod"));
// If the current \pow is inside a sum, do not discard the bracket
// type on \pow but copy it onto each generated \prod element.
if(tr.is_head(it)==false && *tr.parent(it)->name=="\\sum")
prodn->fl.bracket=it->fl.bracket;
sibling_iterator beg=argument;
sibling_iterator nd=beg;
++nd;
argument=tr.reparent(prodn,beg,nd);
tr.erase(exponent);
tr.flatten(it);
multiply(prodn->multiplier, *it->multiplier);
it=tr.erase(it);
// Now duplicate the factor num-1 times.
multiplier_t tot=*argument->multiplier;
for(int i=0; i<num-1; ++i) {
iterator tmp=tr.append_child(prodn);
tot *= *argument->multiplier;
iterator ins=tr.replace(tmp, argument);
one(ins->multiplier);
rename_replacement_dummies(ins);
}
one(argument->multiplier);
multiply(prodn->multiplier, tot);
cleanup_dispatch(kernel, tr, it);
return result_t::l_applied;
}
|