File: Adjform.cc

package info (click to toggle)
cadabra2 2.4.3.2-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 78,732 kB
  • sloc: ansic: 133,450; cpp: 92,064; python: 1,530; javascript: 203; sh: 184; xml: 182; objc: 53; makefile: 51
file content (666 lines) | stat: -rw-r--r-- 14,799 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
#include <algorithm>
#include <iostream>
#include <limits>
#include <numeric>
#include "Adjform.hh"
#include "Cleanup.hh"
#include "Compare.hh"
#include "properties/IndexInherit.hh"
#include "properties/Symbol.hh"
#include "properties/Coordinate.hh"
#include "properties/Trace.hh"

// Get the next permutation of term and return the number of swaps
// required for the transformation
int next_perm(std::vector<size_t>& term)
{
	int n = term.size();

	// Find longest non-increasing suffix to get pivot
	int pivot = n - 2;
	while (pivot > -1) {
		if (term[pivot + 1] > term[pivot])
			break;
		--pivot;
	}

	// Entire sequence is already sorted, return
	if (pivot == -1)
		return 0;

	// Find rightmost element greater than pivot
	int idx = n - 1;
	while (idx > pivot) {
		if (term[idx] > term[pivot])
			break;
		--idx;
	}

	// Swap with pivot
	std::swap(term[pivot], term[idx]);

	// Reverse the suffix
	int swaps = 1;
	int maxswaps = (n - pivot - 1) / 2;
	for (int i = 0; i < maxswaps; ++i) {
		if (term[pivot + i + 1] != term[n - i - 1]) {
			std::swap(term[pivot + i + 1], term[n - i - 1]);
			++swaps;
		}
	}

	return swaps;
}

// Returns the position of 'val' between 'begin' and 'end', starting
// the search at 'offset'
template <typename It, typename T>
size_t index_of(It begin, It end, const T& val, size_t offset = 0)
{
	auto pos = std::find(begin + offset, end, val);
	return std::distance(begin, pos);
}

size_t slots_to_pairs(size_t slots)
{
	size_t res = 1;
	for (size_t i = 3; i < slots; i += 2)
		res *= i;
	return res;
}

size_t ifactorial(size_t n, size_t den = 1)
{
	if (n < 2)
		return 1;

	size_t res = 1;
	for (size_t k = den + 1; k <= n; ++k)
		res *= k;
	return res;
}

namespace cadabra {

	bool is_coordinate(const Kernel& kernel, Ex::iterator it)
	{
		if (it->is_index()) {
			auto coord = kernel.properties.get<Coordinate>(it, true);
			auto integer = it->is_integer();
			return coord != nullptr || integer;
		}
		return false;
	}

	bool is_index(const Kernel& kernel, Ex::iterator it, bool include_coordinates)
	{
		if (it->is_index()) {
			// Ignore things defined with the symbol property, and rational numbers
			auto symbol = kernel.properties.get<Symbol>(it, true);
			auto rational = it->is_rational() && !it->is_integer();
			return
				symbol == nullptr &&
				!rational &&
				(include_coordinates || !is_coordinate(kernel, it));
		}
		return false;
	}

	Adjform::Adjform()
	{

	}

	Adjform::const_iterator Adjform::begin() const
	{
		return data.cbegin();
	}

	Adjform::const_iterator Adjform::end() const
	{
		return data.cend();
	}

	Adjform::size_type Adjform::index_of(value_type index, size_type offset) const
	{
		auto pos = std::find(begin() + offset, end(), index);
		return std::distance(begin(), pos);
	}

	bool Adjform::operator < (const Adjform& other) const
	{
		return data < other.data;
	}

	bool Adjform::operator == (const Adjform& other) const
	{
		return data == other.data;
	}

	bool Adjform::operator != (const Adjform& other) const
	{
		return data != other.data;
	}

	Adjform::const_reference Adjform::operator [] (Adjform::size_type idx) const
	{
		return data[idx];
	}

	Adjform::size_type Adjform::size() const
	{
		return (size_type)data.size();
	}

	Adjform::size_type Adjform::max_size() const
	{
		return std::numeric_limits<value_type>::max();
	}

	bool Adjform::empty() const
	{
		return data.empty();
	}


	bool Adjform::is_free_index(Adjform::size_type pos) const
	{
		return data[pos] < 0;
	}

	bool Adjform::is_dummy_index(Adjform::size_type pos) const
	{
		return data[pos] >= 0;
	}

	Adjform::size_type Adjform::n_free_indices() const
	{
		return std::count_if(data.begin(), data.end(), [](value_type idx) { return idx < 0; });
	}

	Adjform::size_type Adjform::n_dummy_indices() const
	{
		return size() - n_free_indices();
	}

	bool Adjform::resolve_dummy(value_type value)
	{
		// Find positions of both indices
		size_type posA = index_of(value);
		if (posA == size())
			return false;
		size_type posB = index_of(value, posA + 1);
		if (posB == size())
			return false;

		// Contract
		data[posA] = posB;
		data[posB] = posA;
		return true;
	}

	void Adjform::push_index(value_type value)
	{
		auto pos = std::find(data.begin(), data.end(), value);
		if (pos == data.end()) {
			data.push_back(value);
		}
		else {
			*pos = data.size();
			data.push_back(std::distance(data.begin(), pos));
		}
	}

	void Adjform::push_indices(const Adjform& other)
	{
		size_t start_size = size();
		for (auto index : other) {
			if (index > 0)
				push_coordinate(index + start_size);
			else
				push_index(index);
		}
	}

	void Adjform::push_coordinate(value_type value)
	{
		data.push_back(value);
	}

	void Adjform::push_coordinates(const Adjform& other)
	{
		size_t start_size = size();
		for (auto index : other) {
			if (index > 0)
				push_coordinate(index + start_size);
			else
				push_coordinate(index);
		}
	}

	void Adjform::push(Ex::iterator it, IndexMap& index_map, const Kernel& kernel)
	{
		auto val = index_map.get_free_index(it);
		if (IndexMap::is_coordinate(kernel, it))
			push_coordinate(val);
		else
			push_index(val);
	}

	void Adjform::swap(size_type a, size_type b)
	{
		// do nothing if they point to each other
		if (data[a] == b && data[b] == a)
			return;

		// update pointed-to positions
		if (is_dummy_index(a))
			data[data[a]] = b;
		if (is_dummy_index(b))
			data[data[b]] = a;

		std::swap(data[a], data[b]);
	}

	void Adjform::rotate(size_type n)
	{
		if (size() < 2)
			return;
		n = (n % size() + size()) % size();

		std::rotate(data.begin(), data.end() - n, data.end());
		for (auto& idx : data) {
			if (idx >= 0)
				idx = (idx + n) % data.size();
		}
	}

	void Adjform::sort()
	{
		std::sort(data.begin(), data.end());
		auto dummy_start = std::find_if(data.begin(), data.end(), [](value_type v) { return v >= 0; });
		for (size_t pos = std::distance(data.begin(), dummy_start); pos < data.size(); pos += 2) {
			data[pos] = pos + 1;
			data[pos + 1] = pos;
		}
	}

	uint64_t Adjform::to_lehmer_code() const
	{
		std::vector<size_t> counts = { 0 };
		uint64_t dummy_idx = 0;
		size_t n_dummies = n_dummy_indices();
		size_t remaining_dummies = n_dummies;
		array_type perm(size());

		for (value_type i = 0; i < size(); ++i) {
			if (data[i] < 0) {
				perm[i] = -data[i];
				assert(counts.size() < std::numeric_limits<size_type>::max());
				if((size_type)counts.size() <= perm[i])
					counts.resize(perm[i] + 1, 0);
				++counts[perm[i]];
			}
			else {
				if (data[i] > i) {
					size_t dist = 0;
					for (value_type j = i + 1; j < size(); ++j) {
						if (data[j] == i) {
							remaining_dummies -= 2;
							dummy_idx += dist * slots_to_pairs(remaining_dummies);
						}
						else if (data[j] > i) {
							dist += 1;
						}
					}
				}
				perm[i] = 0;
				++counts[0];
			}
		}

		for (size_t i = 0; i < counts.size(); ++i) {
			if (counts[i] == 0) {
				for (auto& elem : perm) {
					assert(elem > 0);
					if((size_t)elem > i)
						--elem;
				}
				counts.erase(counts.begin() + i);
				--i;
			}
		}

		size_t perm_idx = 0;
		for (size_t i = 0; i < perm.size() - 1; ++i) {
			size_t num = ifactorial(perm.size() - i - 1);
			for (size_type j = 0; j < perm[i]; ++j) {
				if (counts[j] == 0)
					continue;
				--counts[j];
				size_t den = 1;
				for (size_t k = 0; k < counts.size(); ++k)
					den *= ifactorial(counts[k]);
				perm_idx += num / den;
				++counts[j];
			}
			--counts[perm[i]];
		}
		return perm_idx * slots_to_pairs(n_dummies) + dummy_idx;
	}

	uint64_t Adjform::max_lehmer_code() const
	{
		auto dummies = n_dummy_indices();
		uint64_t res = ifactorial(data.size(), dummies);
		res *= slots_to_pairs(dummies);
		return res;
	}

	std::string Adjform::to_string() const
	{
		std::string res(data.size(), ' ');
		size_type next_free_index = size();
		for (size_t i = 0; i < data.size(); ++i) {
			if (data[i] < 0) {
				res[i] = 'a' - data[i] - 1;
			}
			else if ((size_t)(data[i]) > i) {
				res[i] = 'a' + next_free_index;
				++next_free_index;
			}
			else {
				res[i] = res[data[i]];
			}
		}
		return res;
	}


	IndexMap::IndexMap(const Kernel& kernel)
		: comp(std::make_unique<Ex_comparator>(kernel.properties))
		, data(std::make_unique<Ex>("T"))
	{

	}

	IndexMap::~IndexMap()
	{
		
	}

	Adjform::value_type IndexMap::get_free_index(Ex::iterator index)
	{
		Adjform::value_type i = 0;
		Ex::iterator head = data->begin();
		for (Ex::sibling_iterator beg = head.begin(), end = head.end(); beg != end; ++beg) {
			comp->clear();
			auto res = comp->equal_subtree(index, beg, Ex_comparator::useprops_t::never, true);
			if (res == Ex_comparator::match_t::subtree_match)
				return -(i + 1);
			++i;
		}
		data->append_child(head, index);
		return -(Adjform::value_type)data->begin().number_of_children();
	}

	bool IndexMap::is_coordinate(const Kernel& kernel, Ex::iterator index)
	{
		if (index->is_integer())
			return true;
		auto symb = kernel.properties.get<Symbol>(index, true);
		if (symb)
			return true;
		auto coord = kernel.properties.get<Coordinate>(index, true);
		if (coord)
			return true;
		return false;
	}

	ProjectedAdjform::integer_type ProjectedAdjform::zero = 0;

	ProjectedAdjform::ProjectedAdjform()
	{

	}

	ProjectedAdjform::ProjectedAdjform(const Adjform& adjform, const ProjectedAdjform::integer_type& value)
	{
		set(adjform, value);
	}

	void ProjectedAdjform::combine(const ProjectedAdjform& other)
	{
		for (const auto& kv : other.data)
			add(kv.first, kv.second);
	}

	void ProjectedAdjform::combine(const ProjectedAdjform& other, integer_type factor)
	{
		for (const auto& kv : other.data)
			add(kv.first, kv.second * factor);
	}

	ProjectedAdjform& ProjectedAdjform::operator += (const ProjectedAdjform& other)
	{
		combine(other);
		return *this;
	}

	ProjectedAdjform operator + (ProjectedAdjform lhs, const ProjectedAdjform& rhs)
	{
		return lhs += rhs;
	}

	void ProjectedAdjform::multiply(const integer_type& k)
	{
		for (auto& kv : data)
			kv.second *= k;
	}

	ProjectedAdjform& ProjectedAdjform::operator *= (const integer_type& k)
	{
		multiply(k);
		return *this;
	}

	ProjectedAdjform operator * (ProjectedAdjform lhs, const ProjectedAdjform::integer_type& rhs)
	{
		lhs.multiply(rhs);
		return lhs;
	}

	ProjectedAdjform::iterator ProjectedAdjform::begin()
	{
		return data.begin();
	}

	ProjectedAdjform::const_iterator ProjectedAdjform::begin() const
	{
		return data.begin();
	}

	ProjectedAdjform::iterator ProjectedAdjform::end()
	{
		return data.end();
	}

	ProjectedAdjform::const_iterator ProjectedAdjform::end() const
	{
		return data.end();
	}

	void ProjectedAdjform::clear()
	{
		data.clear();
	}

	size_t ProjectedAdjform::size() const
	{
		return data.size();
	}

	size_t ProjectedAdjform::max_size() const
	{
		if (empty())
			return 0;
		return begin()->first.max_lehmer_code();
	}

	size_t ProjectedAdjform::n_indices() const
	{
		if (empty())
			return 0;
		return begin()->first.size();
	}

	bool ProjectedAdjform::empty() const
	{
		return data.empty();
	}

	const ProjectedAdjform::integer_type& ProjectedAdjform::get(const Adjform& adjform) const
	{
		auto pos = data.find(adjform);
		return (pos == data.end()) ? zero : pos->second;
	}

	void ProjectedAdjform::set(const Adjform& term, const ProjectedAdjform::integer_type& value)
	{
		if (!term.empty())
			set_(term, value);
	}

	void ProjectedAdjform::set_(const Adjform& term, const ProjectedAdjform::integer_type& value)
	{
		if (value != 0)
			data[term] = value;
		else
			data.erase(term);
	}

	void ProjectedAdjform::add(const Adjform& term, const ProjectedAdjform::integer_type& value)
	{
		if (!term.empty())
			add_(term, value);
	}

	void ProjectedAdjform::add_(const Adjform& term, const ProjectedAdjform::integer_type& value)
	{
		auto elem = data.find(term);
		if (elem == data.end() && value != 0) {
			data[term] = value;
		}
		else {
			elem->second += value;
			if (elem->second == 0)
				data.erase(elem);
		}
	}

	void ProjectedAdjform::apply_young_symmetry(const std::vector<size_t>& indices, bool antisymmetric)
	{
		map_t old_data = data;

		for (const auto& kv : old_data) {
			std::vector<int> values(indices.size());
			std::iota(values.begin(), values.end(), 1);
			std::vector<int> positions(indices.size() + 1);
			std::iota(positions.begin(), positions.end(), -1);
			std::vector<int> directions(indices.size() + 1, -1);
			int sign = -1;
			auto term = kv.first;
			while (true) {
				int r = 0;
				for (int rk = values.size(); rk > 0; --rk) {
					size_t loc = positions[rk] + directions[rk];
					if (loc >= 0 && loc < values.size() && values[loc] < rk) {
						r = rk;
						break;
					}
				}
				if (r == 0)
					break;

				int r_loc = positions[r];
				int l_loc = r_loc + directions[r];
				int l = values[l_loc];

				term.swap(indices[values[l_loc] - 1], indices[values[r_loc] - 1]);
				add_(term, kv.second * (antisymmetric ? sign : 1));

				std::swap(values[l_loc], values[r_loc]);
				std::swap(positions[l], positions[r]);
				sign *= -1;
				for (size_t i = r + 1; i < directions.size(); ++i)
					directions[i] = -directions[i];
			}
		}
	}

	void ProjectedAdjform::apply_ident_symmetry(const std::vector<size_t>& positions, size_t n_indices)
	{
		apply_ident_symmetry(positions, n_indices, std::vector<std::vector<int>>(positions.size(), std::vector<int>(positions.size(), 1)));
	}

	void ProjectedAdjform::apply_ident_symmetry(const std::vector<size_t>& positions, size_t n_indices, const std::vector<std::vector<int>>& commutation_matrix)
	{
		for (size_t i = 0; i < positions.size() - 1; ++i) {
			auto old_data = data;
			for (size_t j = i + 1; j < positions.size(); ++j) {
				int sign = commutation_matrix[i][j];
				if (sign != 0) {
					for (const auto& kv : old_data) {
						auto term = kv.first;
						for (size_t k = 0; k < n_indices; ++k)
							term.swap(positions[i] + k, positions[j] + k);
						add_(term, kv.second * sign);
					}
				}
			}
		}
	}

	void ProjectedAdjform::apply_cyclic_symmetry()
	{
		if (data.empty())
			return;

		size_t n_indices = data.begin()->first.size();
		size_t n_steps = n_indices - 1;
		map_t old_data = data;

		for (const auto& kv : old_data) {
			auto perm = kv.first;
			for (size_t step = 0; step < n_steps; ++step) {
				perm.rotate(1);
				add_(perm, kv.second);
			}
		}
	}

}

std::ostream& operator << (std::ostream& os, const cadabra::Adjform& adjform)
{
	for (const auto& idx : adjform)
		os << idx << ' ';
	return os;
}

std::ostream& operator << (std::ostream& os, const cadabra::ProjectedAdjform& adjex)
{
	size_t i = 0;
	size_t max = std::min(std::size_t(200), adjex.size());
	auto it = adjex.begin();
	while (i < max) {
		os << it->first << '\t' << it->second << '\n';
		++i;
		++it;
	}
	if (max < adjex.size()) {
		os << "(skipped " << (adjex.size() - max) << " terms)\n";
	}
	return os;
}