File: Algorithm.cc

package info (click to toggle)
cadabra2 2.4.3.2-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 78,732 kB
  • sloc: ansic: 133,450; cpp: 92,064; python: 1,530; javascript: 203; sh: 184; xml: 182; objc: 53; makefile: 51
file content (1163 lines) | stat: -rw-r--r-- 32,679 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
/*

Cadabra: a field-theory motivated computer algebra system.
Copyright (C) 2001-2015  Kasper Peeters <kasper.peeters@phi-sci.com>

This program is free software: you can redistribute it and/or
	modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.

*/

#include <stddef.h>
#include "Algorithm.hh"
#include "Storage.hh"
#include "Props.hh"
#include "Cleanup.hh"
#include <typeinfo>
#include <boost/version.hpp>
#if BOOST_VERSION > 105500
#include <boost/core/demangle.hpp>
#endif
//#include <boost/stacktrace.hpp>

#include "properties/Accent.hh"
#include "properties/Derivative.hh"
#include "properties/Indices.hh"
#include "properties/Coordinate.hh"
#include "properties/Symbol.hh"
#include "properties/Trace.hh"
#include "properties/DependsBase.hh"

#include <sstream>

//#define DEBUG

using namespace cadabra;

Algorithm::Algorithm(const Kernel& k, Ex& tr_)
	: IndexClassifier(k),
	  interrupted(false),
	  number_of_calls(0), number_of_modifications(0),
	  suppress_normal_output(false),
	  discard_command_node(false),
	  tr(tr_),
	  pm(0),
	  traverse_ldots(false)
	{
	}

Algorithm::~Algorithm()
	{
	}

void Algorithm::set_progress_monitor(ProgressMonitor *pm_)
	{
	pm=pm_;
	}

Algorithm::result_t Algorithm::apply_pre_order(bool repeat)
	{
#if BOOST_VERSION > 105500
	ScopedProgressGroup(pm, boost::core::demangle(typeid(*this).name()));
#else
	ScopedProgressGroup(typeid(*this).name());
#endif
	
	result_t ret=result_t::l_no_action;
	Ex::iterator start=tr.begin();
	while(start!=tr.end()) {
		if(traverse_ldots || !tr.is_hidden(start)) {
			if(start->is_index()==false) {
				auto aor=apply_once(start);
				if(aor==result_t::l_applied || aor==result_t::l_applied_no_new_dummies) {
					ret=result_t::l_applied;
					// Need to cleanup on the entire tree above us.
					
					if(!repeat) {
						start.skip_children();
						++start;
						}
					}
				else ++start;
				}
			else ++start;
			}
		else {
			++start;
			}
		}

	cleanup_dispatch_deep(kernel, tr);

	return ret;
	}

Algorithm::result_t Algorithm::apply_generic(bool deep, bool repeat, unsigned int depth)
	{
	auto it = tr.begin();
	return apply_generic(it, deep, repeat, depth);
	}

Algorithm::result_t Algorithm::apply_generic(Ex::iterator& it, bool deep, bool repeat, unsigned int depth)
	{
#if BOOST_VERSION > 105500
	ScopedProgressGroup(pm, boost::core::demangle(typeid(*this).name()));
#else
	ScopedProgressGroup(typeid(*this).name());
#endif

	result_t ret=result_t::l_no_action;

	Ex::fixed_depth_iterator start=tr.begin_fixed(it, depth, false);
#ifdef DEBUG
	std::cerr << "apply_generic at " << it.node << " " << *it->name << " " << *start->name << std::endl;
#endif

	while(tr.is_valid(start)) {
		//		std::cerr << "evaluate main loop at " << *start->name << std::endl;
#ifdef DEBUG
		std::cerr << "main loop for " << typeid(*this).name() << ":\n" << Ex(start) << std::endl;
#endif

		result_t thisret=result_t::l_no_action;
		Ex::iterator enter(start);
		Ex::fixed_depth_iterator next(start);
		++next;
		//		if(tr.is_valid(next))
		//			std::cerr << "next = " << *next->name << std::endl;
		do {
			//			std::cout << "apply at " << *enter->name << std::endl;
			bool work_is_topnode=(enter==it);
			if(deep && depth==0)
				thisret = apply_deep(enter);
			else
				thisret = apply_once(enter);

			if(work_is_topnode)
				it=enter;

			// FIXME: handle l_error or remove
			if(thisret==result_t::l_applied || thisret==result_t::l_applied_no_new_dummies)
				ret=result_t::l_applied;
			}
		while(depth==0 && repeat && (thisret==result_t::l_applied || thisret==result_t::l_applied_no_new_dummies));

		if(depth==0) {
			// std::cerr << "break " << std::endl;
			break;
			}
		else {
			// std::cerr << "no break " << std::endl;
			}
		start=next;
		}

	// std::cerr << "pre-exit node " << it.node << std::endl;

	// If we are acting at fixed depth, we will not have gone up in the
	// tree, so missed one cleanup action. Do it now.
	if(depth>0) {
		Ex::fixed_depth_iterator start=tr.begin_fixed(it, depth-1, false);
		while(tr.is_valid(start)) {
			Ex::iterator work=start;
			++start;
			bool cpy=false;
			if(work==it) cpy=true;
			cleanup_dispatch(kernel, tr, work);
			if(cpy) it=work;
			}
		}

	// std::cerr << "exit node " << it.node << std::endl;

	//	if(tr.is_valid(it)) {
	//		std::cerr << "exit " << *it->name << std::endl;
	//		std::cerr << "exit apply_generic\n" << Ex(it) << std::endl;
	//		}

	return ret;
	}

Algorithm::result_t Algorithm::apply_once(Ex::iterator& it)
	{
	// std::cerr << "=== apply_once ===" << std::endl;
	if(traverse_ldots || !tr.is_hidden(it)) {
		if(can_apply(it)) {
			result_t res=apply(it);
			// std::cerr << "apply algorithm at " << *it->name << std::endl;
			if(res==result_t::l_applied || res==result_t::l_applied_no_new_dummies) {
				cleanup_dispatch(kernel, tr, it);
				return res;
				}
			}
		}

	return result_t::l_no_action;
	}

Algorithm::result_t Algorithm::apply_deep(Ex::iterator& it)
	{
	// This recursive algorithm walks the tree depth-first
	// (parent-after-child). The algorithm is applied on each node if
	// can_apply returns true. When the iterator goes up one level
	// (i.e. from a child to a parent), and any changes have been made
	// so far at the child level level, cleanup and simplification
	// routines will be called. The only nodes that can be removed from
	// the tree are nodes at a lower level than the simplification
	// node.

	// std::cout << "=== apply_deep ===" << std::endl;
	//	tr.print_recursive_treeform(std::cout, it);

	post_order_iterator current=it;
	current.descend_all();
	post_order_iterator last=it;
	int deepest_action = -1;
	//	std::cout << "apply_deep: it = " << *it->name << std::endl;
	bool stop_after_this_one=false;
	result_t some_changes_somewhere=result_t::l_no_action;

	for(;;) {
		//		std::cout << "reached " << *current->name << std::endl;
#ifdef DEBUG
		std::cout << "apply_deep " << typeid(*this).name() << ": current = " << *current->name << std::endl;
#endif

		if(current.node==last.node) {
			//			std::cout << "stop after this one" << std::endl;
			stop_after_this_one=true;
			}

		if(deepest_action > tr.depth(current)) {
#ifdef DEBUG
			std::cerr << "simplify; we are at " << *(current->name) << std::endl;
#endif
			iterator work=current;
			bool work_is_topnode=(work==it);
			cleanup_dispatch(kernel, tr, work);
			current=work;
			if(work_is_topnode)
				it=work;
#ifdef DEBUG
			std::cerr << "current now " << *(current->name) << std::endl;
			tr.print_recursive_treeform(std::cerr, current);
#endif
			deepest_action = tr.depth(current); // needs to propagate upwards
			}

		if((traverse_ldots || !tr.is_hidden(current)) && can_apply(current)) {
#ifdef DEBUG
			std::cout << "acting at " << *current->name << std::endl;
#endif
			iterator work=current;
			post_order_iterator next(current);
			++next;
			bool work_is_topnode=(work==it);
			result_t res = apply(work);
			if(res==Algorithm::result_t::l_applied || res==Algorithm::result_t::l_applied_no_new_dummies) {
				some_changes_somewhere=result_t::l_applied;
				if(res==Algorithm::result_t::l_applied) {
//					std::cerr << "rename replacement on " << work << std::endl;
					rename_replacement_dummies(work, true);
					}
				deepest_action=tr.depth(work);
				// If we got a zero at 'work', we need to propagate this up the tree and
				// then restart our post-order traversal such that everything that has
				// been removed from the tree by this zero will no longer be considered.
				if(*work->multiplier==0) {
#ifdef DEBUG
					std::cerr << "propagate zero up the tree" << std::endl;
					tr.print_recursive_treeform(std::cerr, it);
#endif
					post_order_iterator moved_next=work;
					propagate_zeroes(moved_next, it);
#ifdef DEBUG
					tr.print_recursive_treeform(std::cerr, it);
					std::cerr << Ex(it) << std::endl;
#endif
					next=moved_next;
					}

				// The 'work' iterator can now point to a new node. If we were acting at the
				// top node, we need to propagate the change in 'work' to 'it' so the caller
				// knows where the new top node is.
				if(work_is_topnode)
					it=work;
				}
			// The algorithm may have replaced the 'work' node, so instead of walking from
			// there, we continue at the node which was next in line before we called 'apply'.
			current=next;
			}
		else {
			++current;
			}

		if(stop_after_this_one)
			break;

		}

#ifdef DEBUG
	std::cerr << "recursive end **" << std::endl;
#endif

	return some_changes_somewhere;
	}

void Algorithm::propagate_zeroes(post_order_iterator& it, const iterator& topnode)
	{
	assert(*it->multiplier==0);
	if(it==topnode) return;
	if(tr.is_head(it)) return;
	
	iterator walk=tr.parent(it);
#ifdef DEBUG
	std::cerr << "propagate_zeroes at " << *walk->name << std::endl;
#endif
//	if(!tr.is_valid(walk))
//		return;

	const Derivative *der=kernel.properties.get<Derivative>(walk);
	const Trace *trace=kernel.properties.get<Trace>(walk);
	if(*walk->name=="\\prod" || der || trace) {
		if(der && it->is_index()) return;
		walk->multiplier=rat_set.insert(0).first;
		it=walk;
		propagate_zeroes(it, topnode);
		// Removing happens in the next step.
		}
	else if(*walk->name=="\\pow") {
		if(tr.index(it)==0) { // the argument
			walk->multiplier=rat_set.insert(0).first;
			it=walk;
			propagate_zeroes(it, topnode);
			}
		else {   // the exponent
			rset_t::iterator rem=walk->multiplier;
			tr.erase(it);
			tr.flatten(walk);
			it=tr.erase(walk);
			node_one(it);
			it->multiplier=rem;
			}
		}
	else if(*walk->name=="\\sum") {
		if(tr.number_of_children(walk)>2) {
			if(tr.is_valid(tr.next_sibling(it))) {
				it=tr.erase(it);
				it.descend_all();
				}
			else {
				iterator ret=tr.parent(it);
				tr.erase(it);
				it=ret;
				}
			}
		else {
			// If the sum is the top node, we cannot flatten it because
			// we are not allowed to invalidate the topnode iterator
			if(walk==topnode) {
#ifdef DEBUG
				std::cerr << "\\sum at top, cannot flatten" << std::endl;
#endif
				//				it=tr.next_sibling(it); // Added but wrong?
				return;
				}

			tr.erase(it);
			iterator singlearg=tr.begin(walk);
			if(singlearg!=tr.end(walk)) {
				singlearg->fl.bracket=walk->fl.bracket; // to remove brackets of the sum
				if(*tr.parent(walk)->name=="\\prod") {
					multiply(tr.parent(walk)->multiplier, *singlearg->multiplier);
					cadabra::one(singlearg->multiplier);
					}
				}
			tr.flatten(walk);
			it=tr.erase(walk);
			if(*it->name=="\\prod" && *tr.parent(it)->name=="\\prod") {
				tr.flatten(it);
				it=tr.erase(it);
				}
			}
		}
	else {
		iterator nn=tr.insert_after(it, str_node("1"));
		nn->fl.parent_rel=it->fl.parent_rel;
		nn->fl.bracket=it->fl.bracket;
		it=tr.erase(it);
		zero(it->multiplier);
		}

	return;
	}

void Algorithm::pushup_multiplier(iterator it)
	{
	if(!tr.is_valid(it)) return;
	if(*it->multiplier!=1) {
		if(*it->name=="\\sum") {
			//			txtout << "SUM" << std::endl;
			sibling_iterator sib=tr.begin(it);
			while(sib!=tr.end(it)) {
				multiply(sib->multiplier, *it->multiplier);
				//				txtout << "going up" << std::endl;
				if(tr.is_head(it)==false)
					pushup_multiplier(tr.parent(it));
				//				txtout << "back and back up" << std::endl;
				pushup_multiplier(sib);
				//				txtout << "back" << std::endl;
				++sib;
				}
			::one(it->multiplier);
			}
		else {
			//			txtout << "PUSHUP: " << *it->name << std::endl;
			if(tr.is_head(it)==false) {
				//				txtout << "test propinherit" << std::endl;
				//				iterator tmp=tr.parent(it);
				// tmp not always valid?!? This one crashes hard with a loop!?!
				//				txtout << " of " << *tmp->name << std::endl;
				const PropertyInherit *pin=kernel.properties.get<PropertyInherit>(tr.parent(it));
				if(pin || *(tr.parent(it)->name)=="\\prod") {
					multiply(tr.parent(it)->multiplier, *it->multiplier);
					::one(it->multiplier); // moved up, was at end of block, correct?
					//					txtout << "going up" << std::endl;
					pushup_multiplier(tr.parent(it));
					//					txtout << "back" << std::endl;
					}
				//				else txtout << "not relevant" << std::endl;
				}
			}
		}
	}

void Algorithm::node_zero(iterator it)
	{
	::zero(it->multiplier);
	tr.erase_children(it);
	it->name=name_set.insert("1").first;
	}

void Algorithm::node_one(iterator it)
	{
	::one(it->multiplier);
	tr.erase_children(it);
	it->name=name_set.insert("1").first;
	}

void Algorithm::node_integer(iterator it, int num)
	{
	::one(it->multiplier);
	tr.erase_children(it);
	it->name=name_set.insert("1").first;
	::multiply(it->multiplier, num);
	}

int Algorithm::index_parity(iterator it) const
	{
	sibling_iterator frst=tr.begin(tr.parent(it));
	sibling_iterator fnd(it);
	int sgn=1;
	while(frst!=fnd) {
		sgn=-sgn;
		++frst;
		}
	return sgn;
	}


unsigned int Algorithm::number_of_indices(iterator it)
	{
	unsigned int res=0;
	index_iterator indit=begin_index(it);
	while(indit!=end_index(it)) {
		++res;
		++indit;
		}
	return res;
	}

std::string Algorithm::get_index_set_name(iterator it) const
	{
	const Indices *ind=kernel.properties.get<Indices>(it, true);
	if(ind) {
		return ind->set_name;
		// TODO: The logic was once as below, but it is no longer clear to
		// me why that would ever make sense.
		//		if(ind->parent_name!="") return ind->parent_name;
		//		else                     return ind->set_name;
		}
	else return " undeclared";
	}

index_iterator Algorithm::begin_index(iterator it) const
	{
	return index_iterator::begin(kernel.properties, it);
	}

index_iterator Algorithm::end_index(iterator it) const
	{
	return index_iterator::end(kernel.properties, it);
	}




bool Algorithm::check_index_consistency(iterator it) const
	{
	index_map_t ind_free, ind_dummy;
	classify_indices(it,ind_free,ind_dummy);
	return true;
	}

bool Algorithm::check_degree_consistency(iterator ) const
	{
	return true; // FIXME: this needs to be implemented.
	}

bool Algorithm::check_consistency(iterator it) const
	{
	Stopwatch w1;
	w1.start();
	//	debugout << "checking consistency ... " << std::flush;
	assert(tr.is_head(it)==false);
	//	iterator entry=it;
	iterator end=it;
	end.skip_children();
	++end;
	while(it!=end) {
		if(interrupted)
			throw InterruptionException("check_consistency");

		if(*it->name=="\\sum") {
			if(*it->multiplier!=1)
				throw ConsistencyException("Found \\sum node with non-unit multiplier.");
			else if(Ex::number_of_children(it)<2)
				throw ConsistencyException("Found a \\sum node with 0 or 1 child nodes.");
			else {
				sibling_iterator sumch=it.begin();
				str_node::bracket_t firstbracket=sumch->fl.bracket;
				while(*sumch->name=="\\sum" || *sumch->name=="\\prod") {
					++sumch;
					if(sumch==it.end()) break;
					else                  firstbracket=sumch->fl.bracket;
					}
				sumch=it.begin();
				while(sumch!=it.end()) {
					if(*sumch->name!="\\sum" && *sumch->name!="\\prod") {
						if(sumch->fl.bracket!=firstbracket)
							throw ConsistencyException("Found a \\sum node with different brackets on its children.");
						}
					//					else if(*sumch->name=="\\sum") {
					//						sibling_iterator sumchch=sumch.begin();
					//						while(sumchch!=sumch.end()) {
					//							if(sumchch->fl.bracket==str_node::b_none) {
					//								tr.print_recursive_treeform(debugout, entry);
					//								throw ConsistencyException("Found a sum node with \\sum child without bracketed children.");
					//								}
					//							++sumchch;
					//							}
					//						}
					++sumch;
					}
				}
			}
		else if(*it->name=="\\prod") {
			if(Ex::number_of_children(it)<=1)
				throw ConsistencyException("Found \\prod node with only 0 or 1 children.");
			sibling_iterator ch=it.begin();
			str_node::bracket_t firstbracket=ch->fl.bracket;
			while(*ch->name=="\\sum" || *ch->name=="\\prod") {
				++ch;
				if(ch==it.end())   break;
				else               firstbracket=ch->fl.bracket;
				}
			ch=it.begin();
			while(ch!=it.end()) {
				if(*ch->name!="\\prod" && *ch->name!="\\sum") {
					if(ch->fl.bracket!=firstbracket)
						throw ConsistencyException("Found \\prod node with different brackets on its children.");
					}
				if(*ch->multiplier!=1) {
					throw ConsistencyException("Found \\prod child with non-unit multiplier.");
					//					debugout << "node name " << *ch->name << ", multiplier " << *ch->multiplier << std::endl;
					//					inconsistent=true;
					//					break;
					}
				++ch;
				}
			}
		else if(*it->name=="\\sequence") {
			if(Ex::number_of_children(it)!=2)
				throw ConsistencyException("Found \\sequence node with incorrect (non-2) number of children.");
			}
		++it;
		}

	w1.stop();
	//	debugout << "checking done..." << w1 << std::endl;
	return true;
	}

void Algorithm::report_progress(const std::string&, int, int, int count)
	{
//	bool display=false;
//	if(count==2) display=true;
//	else {
//		if(report_progress_stopwatch.stopped()) {
//			display=true;
//			report_progress_stopwatch.start();
//			}
//		else {
//			if(report_progress_stopwatch.seconds()>0 || report_progress_stopwatch.useconds()>300000L) {
//				display=true;
//				report_progress_stopwatch.reset();
//				}
//			}
//		}

	//	if(display) { // prevents updates at a rate of more than one per second
	//		if(eo->output_format==Ex_output::out_xcadabra) {
	//			txtout << "<progress>" << std::endl
	//					 << str << std::endl
	//					 << todo << std::endl
	//					 << done << std::endl
	//					 << count << std::endl
	//					 << "</progress>" << std::endl;
	//			}
	//		else {
	//			if(count==2)
	//				txtout << str << " (" << done << " of " << todo << " completed)" << std::endl;
	//			}
	//		}
	}

bool Algorithm::rename_replacement_dummies(iterator two, bool still_inside_algo)
	{
#ifdef DEBUG
	std::cerr << "renaming in " << two << std::endl;
#endif
	//	std::cout << "full story " << *two->name << std::endl;
	//	print_classify_indices(two);
	//	std::cout << "replacement" << std::endl;
	//	print_classify_indices(std::cout, two);

	index_map_t ind_free, ind_dummy;
	index_map_t ind_free_full, ind_dummy_full;

	if(false && still_inside_algo) {
		if(tr.is_head(two)==false)
			classify_indices_up(tr.parent(two), ind_free_full, ind_dummy_full);
		}
	else {
		classify_indices_up(two, ind_free_full, ind_dummy_full); // the indices in everything except the replacement
		}
	classify_indices(two, ind_free, ind_dummy); // the indices in the replacement subtree
#ifdef DEBUG
	std::cerr << "dummies of " << *two->name << std::endl;
	for(auto& ii: ind_dummy)
		std::cerr << ii.first << std::endl;
	std::cerr << "free indices above us" << std::endl;
	for(auto& ii: ind_free_full)
		std::cerr << ii.first << std::endl;
	std::cerr << "dummy indices above us" << std::endl;
	for(auto& ii: ind_dummy_full)
		std::cerr << ii.first << std::endl;
#endif

	index_map_t must_be_empty;
	index_map_t newly_generated;

	// Catch double index pairs
	determine_intersection(ind_dummy_full, ind_dummy, must_be_empty);
	index_map_t::iterator it=must_be_empty.begin();
	while(it!=must_be_empty.end()) {
#ifdef DEBUG
		std::cerr << "double index pair" << std::endl;
#endif
		Ex the_key=(*it).first;
		const Indices *dums=kernel.properties.get<Indices>(it->second, true);
		if(!dums)
			throw ConsistencyException("Failed to find dummy property for $"+*it->second->name+"$ while renaming dummies.");
		//			txtout << "failed to find dummy property for " << *it->second->name << std::endl;
		assert(dums);
		Ex relabel
		   =get_dummy(dums, &ind_dummy_full, &ind_dummy, &ind_free_full, &ind_free, &newly_generated);
		newly_generated.insert(index_map_t::value_type(Ex(relabel),(*it).second));
		//		txtout << " renamed to " << *relabel << std::endl;
		do {
			tr.replace_index((*it).second, relabel.begin(), true);
			//			(*it).second->name=relabel;
			++it;
			}
		while(it!=must_be_empty.end() && tree_exact_equal(&kernel.properties, (*it).first,the_key, 1, true, -2, true));
		}

	// Catch triple indices (two cases: dummy pair in replacement, free index elsewhere and
	// dummy elsewhere, free index in replacement)
	must_be_empty.clear();
	//	newly_generated.clear(); // DO NOT ERASE, IDIOT!

	determine_intersection(ind_free_full, ind_dummy, must_be_empty);
	//for(auto& ii: must_be_empty) {
	//	std::cerr << ii.first << std::endl;
	//	}
	it=must_be_empty.begin();
	while(it!=must_be_empty.end()) {
		//std::cerr << "triple index pair " << it->first << std::endl;
		Ex the_key=(*it).first;
		const Indices *dums=kernel.properties.get<Indices>(it->second, true);
		if(!dums)
			throw ConsistencyException("Failed to find dummy property for $"+*it->second->name+"$ while renaming dummies.");
		assert(dums);
		Ex relabel
		   =get_dummy(dums, &ind_dummy_full, &ind_dummy, &ind_free_full, &ind_free, &newly_generated);
		relabel.begin()->fl.parent_rel=it->second->fl.parent_rel;
		newly_generated.insert(index_map_t::value_type(relabel,(*it).second));
		do {
			tr.replace_index((*it).second, relabel.begin(), true);
			++it;
			}
		while(it!=must_be_empty.end() && tree_exact_equal(&kernel.properties, (*it).first,the_key, 1, true, -2, true));
		}

	must_be_empty.clear();
	//	newly_generated.clear();
	determine_intersection(ind_free, ind_dummy_full, must_be_empty);
	it=must_be_empty.begin();
	while(it!=must_be_empty.end()) {
		// std::cerr << "triple index pair 2" << std::endl;
		Ex the_key=(*it).first;
		const Indices *dums=kernel.properties.get<Indices>(it->second, true);
		if(!dums)
			throw ConsistencyException("Failed to find dummy property for $"+*it->second->name+"$ while renaming dummies.");
		assert(dums);
		Ex relabel
		   =get_dummy(dums, &ind_dummy_full, &ind_dummy, &ind_free_full, &ind_free, &newly_generated);
		relabel.begin()->fl.parent_rel=it->second->fl.parent_rel;
		newly_generated.insert(index_map_t::value_type(relabel,(*it).second));
		do {
			tr.replace_index((*it).second, relabel.begin(), true);
			++it;
			}
		while(it!=must_be_empty.end() && tree_exact_equal(&kernel.properties, (*it).first,the_key, 1, true, -2, true));
		}

	return true;
	}



bool Algorithm::contains(sibling_iterator from, sibling_iterator to, sibling_iterator arg)
	{
	while(from!=to) {
		if(from->name==arg->name) return true;
		++from;
		}
	return false;
	}

Algorithm::range_vector_t::iterator Algorithm::find_arg_superset(range_vector_t& ran,
      sibling_iterator it)
	{
	sibling_iterator nxt=it;
	++nxt;
	return find_arg_superset(ran, it, nxt);
	}

//void Algorithm::find_argument_lists(range_vector_t& ran, bool only_comma_lists) const
//	{
//	sibling_iterator argit=args_begin();
//	while(argit!=args_end()) {
//		if(*argit->name=="\\comma") {
//			ran.push_back(range_t(tr.begin(argit), tr.end(argit)));
//			}
//		else if(!only_comma_lists) {
//			sibling_iterator argnxt=argit; ++argnxt;
//			ran.push_back(range_t(argit, argnxt));
//			}
//		++argit;
//		}
//	}

template<class Iter>
Algorithm::range_vector_t::iterator Algorithm::find_arg_superset(range_vector_t& ran, Iter st, Iter nd)
	{
	range_vector_t::iterator ranit=ran.begin();
	while(ranit!=ran.end()) {
		sibling_iterator findthese=st;
		bool contained=true;
		while(findthese!=nd) {
			if(contains((*ranit).first, (*ranit).second, findthese)) {
				++findthese;
				}
			else {
				contained=false;
				break;
				}
			}
		if(contained) return ranit;
		++ranit;
		}
	return ran.end();
	}

bool Algorithm::is_termlike(iterator it)
	{
	if(*it->name=="\\equals") return false;

	if(!is_factorlike(it))
		if(*it->name!="\\sum")
			if(it->fl.parent_rel==str_node::p_none)
				return true;

	return false;
	}

bool Algorithm::is_factorlike(iterator it)
	{
	if(Ex::is_head(it)) return false;
	if(*Ex::parent(it)->name=="\\prod")
		return true;
	return false;
	}

// This only returns true if the indicated node is a single non-reserved node (non-prod, non-sum, ...)
// at the top level of an expression (real top, top of equation lhs/rhs, top of integral argument, ...).

bool Algorithm::is_single_term(iterator it)
	{
	if(*it->name!="\\prod" && *it->name!="\\sum" && *it->name!="\\asymimplicit"
	      && *it->name!="\\comma" && *it->name!="\\equals" && *it->name!="\\arrow") {

		if(tr.is_head(it) || *tr.parent(it)->name=="\\equals" || *tr.parent(it)->name=="\\int") return true;
		else if(*tr.parent(it)->name=="\\sum")
			return true;
		else if(*tr.parent(it)->name!="\\prod" && it->fl.parent_rel==str_node::parent_rel_t::p_none
		        && kernel.properties.get<Accent>(tr.parent(it))==0 ) {
#ifdef DEBUG
			std::cerr << "Found single term in " << tr.parent(it) << std::endl;
#endif
			return true;
			}
		}
	return false;
	}

bool Algorithm::is_nonprod_factor_in_prod(iterator it)
	{
	if(*it->name!="\\prod" && *it->name!="\\sum" && *it->name!="\\asymimplicit" && *it->name!="\\comma"
	      && *it->name!="\\equals") {
		try {
			if(tr.is_head(it)==false && *tr.parent(it)->name=="\\prod")
				return true;
			}
		catch(navigation_error& ex) {
			// no parent, ignore
			}
		//		else return true;
		}
	return false;
	}

bool Algorithm::prod_wrap_single_term(iterator& it)
	{
	if(is_single_term(it)) {
		force_node_wrap(it, "\\prod");
		return true;
		}
	else return false;
	}

bool Algorithm::sum_wrap_single_term(iterator& it)
	{
	if(is_single_term(it)) {
		force_node_wrap(it, "\\sum");
		return true;
		}
	else return false;
	}

void Algorithm::force_node_wrap(iterator& it, std::string nm)
	{
	iterator prodnode=tr.insert(it, str_node(nm));
	sibling_iterator fr=it, to=it;
	++to;
	tr.reparent(prodnode, fr, to);
	prodnode->fl.bracket=it->fl.bracket;
	it->fl.bracket=str_node::b_none;
	if(nm!="\\sum") { // multipliers should sit on terms in a sum
		prodnode->multiplier=it->multiplier;
		one(it->multiplier);
		}
	it=prodnode;
	}

bool Algorithm::prod_unwrap_single_term(iterator& it)
	{
	if((*it->name)=="\\prod") {
		if(tr.number_of_children(it)==1) {
			multiply(tr.begin(it)->multiplier, *it->multiplier);
			tr.begin(it)->fl.bracket=it->fl.bracket;
			tr.begin(it)->multiplier=it->multiplier;
			tr.flatten(it);
			it=tr.erase(it);
			return true;
			}
		}
	return false;
	}

bool Algorithm::sum_unwrap_single_term(iterator& it)
	{
	if((*it->name)=="\\sum") {
		if(tr.number_of_children(it)==1) {
			multiply(tr.begin(it)->multiplier, *it->multiplier);
			tr.begin(it)->fl.bracket=it->fl.bracket;
			tr.begin(it)->multiplier=it->multiplier;
			tr.flatten(it);
			it=tr.erase(it);
			return true;
			}
		}
	return false;
	}

bool Algorithm::separated_by_derivative(iterator i1, iterator i2, iterator check_dependence) const
	{
	iterator lca = tr.lowest_common_ancestor(i1, i2);

	// Walk up the tree from the first node until the LCA, flag any derivatives
	// with which we do not commute.

	struct {
		bool operator()(const Kernel& kernel, Ex& tr, iterator walk, iterator lca, iterator check_dependence)
			{
			const Properties& pr=kernel.properties;
			do {
				walk=Ex::parent(walk);
				if(walk == lca) break;
				const Derivative *der=pr.get<Derivative>(walk);
				if(der) {
					if(tr.is_valid(check_dependence) ) {
						const DependsBase *dep = pr.get<DependsBase>(check_dependence);
						if(dep) {
							Ex deps=dep->dependencies(kernel, check_dependence);
							sibling_iterator depobjs=deps.begin(deps.begin());
							while(depobjs!=deps.end(deps.begin())) {
								if(walk->name == depobjs->name) {
									return true;
									}
								else {
									// compare all indices
									sibling_iterator indit=tr.begin(walk);
									while(indit!=tr.end(walk)) {
										if(indit->is_index()) {
											if(subtree_exact_equal(&pr, indit, depobjs))
												return true;
											}
										++indit;
										}
									}
								++depobjs;
								}
							return false; // Dependence found but not relevant here.
							}
						else return false;   // No dependence property found at all.
						}
					else return true;   // Should not check for dependence.
					}
				}
			while(walk != lca);
			return false;
			}
		} one_run;

	if(one_run(kernel, tr, i1, lca, check_dependence)) return true;
	if(one_run(kernel, tr, i2, lca, check_dependence)) return true;

	return false;
	}


// bool Algorithm::cleanup_anomalous_products(Ex& tr, Ex::iterator& it)
// 	{
// 	if(*(it->name)=="\\prod") {
// 		 if(tr.number_of_children(it)==0) {
// 			  it->name=name_set.insert("1").first;
// 			  return true;
// 			  }
// 		 else if(tr.number_of_children(it)==1) {
// 			  tr.begin(it)->fl.bracket=it->fl.bracket;
// 			  tr.begin(it)->multiplier=it->multiplier;
// 			  tr.flatten(it);
// 			  Ex::iterator tmp=tr.erase(it);
// //			  txtout << "HERRE?" << std::endl;
// 			  pushup_multiplier(tmp);
// 			  it=tmp;
// 			  return true;
// 			  }
// 		 }
// 	return false;
// 	}
//

unsigned int Algorithm::locate_single_object(Ex::iterator obj_to_find,
      Ex::iterator st, Ex::iterator nd,
      std::vector<unsigned int>& store)
	{
	unsigned int count=0;
	unsigned int index=0;
	while(st!=nd) {
		Ex::iterator it1=st;
		it1.skip_children();
		++it1;
		if(tr.equal(st, it1, obj_to_find, Algorithm::compare_)) {
			++count;
			store.push_back(index);
			}
		++st;
		++index;
		}
	return count;
	}

bool Algorithm::locate_object_set(const Ex& objs,
                                  Ex::iterator st, Ex::iterator nd,
                                  std::vector<unsigned int>& store)
	{
	// Locate the objects in which to symmetrise. We use an integer
	// index (offset wrt. 'st') rather than an iterator because the
	// latter only apply to a single tree, not to its copies.

	// We accept only a tree with a \comma node at the top.
	Ex::iterator top=objs.begin();
	if(*top->name!="\\comma")
		top = objs.begin(objs.begin());

	assert(*top->name=="\\comma");

	Ex::sibling_iterator fst=objs.begin(top);
	Ex::sibling_iterator fnd=objs.end(top);
	while(fst!=fnd) {
		Ex::iterator aim=fst;
		if((*aim->name)=="\\comma") {
			// Objects can themselves be lists of other objects (for instance
			// when we want to symmetrise in index pairs).
			if(locate_object_set(aim, st, nd, store)==false)
				return false;
			}
		else {
			if((*aim->name).size()==0 && tr.number_of_children(aim)==1)
				aim=tr.begin(aim);
			if(locate_single_object(aim, st, nd, store)!=1)
				return false;
			}
		++fst;
		}
	return true;
	}


namespace cadabra {

	// static functions

	unsigned int Algorithm::number_of_indices(const Properties& pr, iterator it)
		{
		unsigned int res=0;
		index_iterator indit=index_iterator::begin(pr, it);
		while(indit!=index_iterator::end(pr, it)) {
			++res;
			++indit;
			}
		return res;
		}

	unsigned int Algorithm::number_of_direct_indices(iterator it)
		{
		unsigned int res=0;
		sibling_iterator sib=Ex::begin(it);
		while(sib!=Ex::end(it)) {
			if(sib->fl.parent_rel==str_node::p_sub || sib->fl.parent_rel==str_node::p_super)
				++res;
			++sib;
			}
		return res;
		}

	bool Algorithm::less_without_numbers(nset_t::iterator it1, nset_t::iterator it2)
		{
		std::string::const_iterator ch1=(*it1).begin();
		std::string::const_iterator ch2=(*it2).begin();

		while(ch1!=(*it1).end() && ch2!=(*it2).end()) {
			if(isdigit(*ch1)) return true;   // bla1  < blaq
			if(isdigit(*ch2)) return false;  // blaa !< bla1
			if(*ch1>=*ch2)    return false;
			++ch1;
			++ch2;
			}
		if(ch1==(*it1).end()) {
			if(ch2==(*it2).end())
				return false;
			else
				return true;
			}
		return false;
		}

	bool Algorithm::equal_without_numbers(nset_t::iterator it1, nset_t::iterator it2)
		{
		std::string::const_iterator ch1=(*it1).begin();
		std::string::const_iterator ch2=(*it2).begin();

		while(ch1!=(*it1).end() && ch2!=(*it2).end()) {
			if(isdigit(*ch1)) {
				if(isdigit(*ch2))
					return true;
				else
					return false;
				}
			if(*ch1!=*ch2) return false;
			++ch1;
			++ch2;
			}
		if(ch1==(*it1).end()) {
			if(ch2==(*it2).end())
				return true;
			else
				return false;
			}
		return false;
		}

	bool Algorithm::compare_(const str_node& one, const str_node& two)
		{
		// If the obj->name is empty, this means that we look for a tree with
		// anything as root, but the required index structure in obj.  This
		// requires a slightly different 'equal_to' (one that always matches
		// an empty node with a non-empty node).

		if(/* one.fl.bracket!=two.fl.bracket || */ one.fl.parent_rel!=two.fl.parent_rel)
			return false;

		if((*two.name).size()==0)
			return true;
		else if(one.name==two.name)
			return true;
		return false;
		}

	}