1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
|
#include "Cleanup.hh"
#include "Functional.hh"
#include "Algorithm.hh"
#include "algorithms/collect_terms.hh"
#include "properties/Coordinate.hh"
#include "properties/SelfAntiCommuting.hh"
#include "properties/Integer.hh"
#include "properties/Diagonal.hh"
#include "properties/ExteriorDerivative.hh"
#include "properties/DifferentialForm.hh"
#include "properties/KroneckerDelta.hh"
#include "properties/Matrix.hh"
#include "properties/NumericalFlat.hh"
#include "properties/PartialDerivative.hh"
#include "properties/ImaginaryI.hh"
// #define DEBUG 1
namespace cadabra {
void cleanup_dispatch(const Kernel& kernel, Ex& tr, Ex::iterator& it)
{
#ifdef DEBUG
std::cerr << "cleanup at " << *it->name << std::endl;
#endif
// Run the cleanup as long as the expression changes.
bool changed;
do {
changed=false;
bool res=false;
if(it->is_zero() && (tr.number_of_children(it)!=0 || *it->name!="1")) {
cadabra::zero(it->multiplier);
tr.erase_children(it);
it->name=name_set.insert("1").first;
// once we hit zero, there is nothing to simplify anymore
break;
}
if(*it->name=="\\frac") res = cleanup_fraclike(kernel, tr, it);
changed = changed || res;
if(*it->name=="\\pow") res = cleanup_powlike(kernel, tr, it);
changed = changed || res;
if(*it->name=="\\prod" || *it->name=="\\wedge") res = cleanup_productlike(kernel, tr, it);
changed = changed || res;
if(*it->name=="\\sum") res = cleanup_sumlike(kernel, tr, it);
changed = changed || res;
if(*it->name=="\\comma") res = cleanup_comma(kernel, tr, it);
changed = changed || res;
if(*it->name=="\\tie") res = cleanup_tie(kernel, tr, it);
changed = changed || res;
if(*it->name=="\\components") res = cleanup_components(kernel, tr, it);
changed = changed || res;
const Derivative *der = kernel.properties.get<Derivative>(it);
if(der) {
res = cleanup_derivative(kernel, tr, it);
changed = changed || res;
}
const PartialDerivative *pder = kernel.properties.get<PartialDerivative>(it);
if(pder) {
res = cleanup_partialderivative(kernel, tr, it);
changed = changed || res;
}
// std::cerr << "derivative " << changed << std::endl;
const NumericalFlat *nf = kernel.properties.get<NumericalFlat>(it);
if(nf) {
res = cleanup_numericalflat(kernel, tr, it);
changed = changed || res;
}
// std::cerr << "numerical " << changed << std::endl;
const Diagonal *diag = kernel.properties.get<Diagonal>(it);
if(diag) {
res = cleanup_diagonal(kernel, tr, it);
changed = changed || res;
}
// std::cerr << "diagonal " << changed << std::endl;
//std::cerr << "Is symbol " << Ex(it) << " a KD?" << std::endl;
const KroneckerDelta *kr = kernel.properties.get<KroneckerDelta>(it);
if(kr) {
//std::cerr << "Symbol " << Ex(it) << " is a KD" << std::endl;
res = cleanup_kronecker(kernel, tr, it);
changed = changed || res;
}
// std::cerr << "delta " << changed << std::endl;
const ExteriorDerivative *ed = kernel.properties.get<ExteriorDerivative>(it);
if(ed) {
res = cleanup_exterior_derivative(kernel, tr, it);
changed = changed || res;
}
}
while(changed);
// std::cerr << Ex(it) << std::endl;
}
void check_index_consistency(const Kernel& k, Ex& tr, Ex::iterator it)
{
if(it==tr.end()) return;
collect_terms ct(k, tr);
ct.check_index_consistency(it);
ct.check_degree_consistency(it); // FIXME: needs to be implemented in Algorithm.
}
bool cleanup_fraclike(const Kernel& k, Ex&tr, Ex::iterator& it)
{
auto arg=tr.begin(it);
if(*arg->name=="\\equals") {
// When dividing an equation by something else, divide both sides.
auto div=arg;
++div;
auto lhs=tr.begin(arg);
auto rhs=lhs;
rhs.skip_children();
++rhs;
auto lhsfrac=tr.wrap(lhs, str_node("\\frac"));
auto rhsfrac=tr.wrap(rhs, str_node("\\frac"));
tr.append_child(lhsfrac, div);
tr.append_child(rhsfrac, div);
it=tr.flatten_and_erase(it);
return true;
}
return false;
}
bool cleanup_powlike(const Kernel& k, Ex&tr, Ex::iterator& it)
{
auto arg=tr.begin(it);
auto exp=arg;
++exp;
if(exp==tr.end(it)) return false;
// (anything)^1 = anything
if(exp->is_integer() && *exp->multiplier==1) {
tr.erase(exp);
it = tr.flatten_and_erase(it);
return true;
}
if(*arg->name=="1") {
if(*arg->multiplier==0) { // 0**anything = 0
zero(it->multiplier);
return true;
}
if(*arg->multiplier==1) { // 1**anything = 1
one(it->multiplier);
tr.erase_children(it);
it->name=name_set.insert("1").first;
return true;
}
if(*exp->name=="1" && *exp->multiplier==-1) { // Turn (numerical)**(-1) into a multiplier.
multiply(it->multiplier, multiplier_t(1)/(*arg->multiplier));
tr.erase_children(it);
it->name = name_set.insert("1").first;
return true;
}
}
// Turn \pow{mA A}{B} with mA the multiplier for A into mA^B \pow{A}{B}
if(exp->is_integer() && *arg->multiplier!=1 && *arg->name!="1") {
mpz_class nw_n, nw_d;
// std::cerr << "also doing " << arg << ", " << *arg->multiplier << "**" << *exp->multiplier << "***" << std::endl;
long Cexp=to_long(*exp->multiplier);
mpz_pow_ui(nw_n.get_mpz_t(), arg->multiplier->get_num().get_mpz_t(), std::abs(Cexp));
mpz_pow_ui(nw_d.get_mpz_t(), arg->multiplier->get_den().get_mpz_t(), std::abs(Cexp));
// std::cerr << nw_n << ", " << nw_d << std::endl;
if(Cexp<0)
std::swap(nw_n, nw_d);
multiplier_t newmult=multiplier_t(nw_n, nw_d);
newmult.canonicalize();
// std::cerr << newmult << std::endl;
it->multiplier=rat_set.insert(newmult).first;
one(arg->multiplier);
return true;
}
// Turn \pow{mult \pow{A}{B}}{C} into \pow{mult}{C} \pow{A}{B*C} if C is an integer.
// A bit tricky with the multiplier of \pow{A}{B}, as that becomes mult^C
// and can then either be absorbed into the overall multiplier, or needs
// a second factor.
auto ipow=tr.begin(it);
if(*ipow->name=="\\pow") {
// std::cerr << "*POW" << std::endl;
// tr.print_recursive_treeform(std::cerr, it);
auto iA=tr.begin(ipow);
auto iB=iA;
++iB;
auto iC=ipow;
++iC;
// std::cerr << it << std::endl;
if(iC->is_integer() || k.properties.get<Integer>(iC)) {
if(iC->is_integer()) { // newmult = (mult)^C;
mpz_class nw_n, nw_d;
// std::cerr << "doing " << *ipow->multiplier << "**" << *iC->multiplier << std::endl;
long Cexp=to_long(*iC->multiplier);
mpz_pow_ui(nw_n.get_mpz_t(), ipow->multiplier->get_num().get_mpz_t(), std::abs(Cexp));
mpz_pow_ui(nw_d.get_mpz_t(), ipow->multiplier->get_den().get_mpz_t(), std::abs(Cexp));
if(Cexp<0)
std::swap(nw_n, nw_d);
multiplier_t newmult=multiplier_t(nw_n, nw_d);
newmult.canonicalize();
// std::cerr << "new multiplier " << newmult << std::endl;
ipow->multiplier=rat_set.insert(newmult).first;
}
else { // need to generate (mult)^C as a separate factor, if mult!=1.
if(*ipow->multiplier!=1) {
// std::cerr << "generate separate factor for " << *ipow->multiplier << "**" << iC << std::endl;
Ex nw("\\pow");
nw.append_child(nw.begin(), str_node("1"))->multiplier=ipow->multiplier;
nw.append_child(nw.begin(), Ex::iterator(iC));
tr.wrap(it, str_node("\\prod"));
tr.insert_subtree(it, nw.begin());
one(ipow->multiplier);
}
}
Ex::iterator expprod=tr.wrap(iB, str_node("\\prod"));
tr.move_after(iB, iC);
it=tr.flatten_and_erase(it);
cleanup_productlike(k, tr, expprod);
// std::cerr << "after: " << it << std::endl;
return true;
}
}
return false;
}
bool cleanup_productlike(const Kernel& k, Ex&tr, Ex::iterator& it)
{
bool ret=false;
assert(*it->name=="\\prod" || *it->name=="\\wedge");
std::string nm = *it->name;
// Flatten prod children inside this prod node.
auto sib=tr.begin(it);
while(sib!=tr.end(it)) {
if(*sib->name==nm) {
multiply(it->multiplier, *sib->multiplier);
tr.flatten(sib);
sib=tr.erase(sib);
ret=true;
}
else ++sib;
}
if(tr.number_of_children(it)==1)
if(tr.begin(it)->is_range_wildcard())
return ret;
ret = ret || cleanup_numericalflat(k, tr, it);
// Turn products of ImaginaryI into -1 factors.
if(tr.number_of_children(it)>1) {
std::vector<Ex::sibling_iterator> fs;
auto sib=tr.begin(it);
while(sib!=tr.end(it)) {
if(k.properties.get<ImaginaryI>(sib))
fs.push_back(sib);
++sib;
}
multiplier_t mult=1;
for(size_t i=0; i<fs.size()/2; ++i) {
tr.erase(fs[2*i]);
tr.erase(fs[2*i+1]);
mult*=-1;
}
multiply(it->multiplier, mult);
}
// Turn products with two adjacent identical anti-commuting siblings to zero.
if(nm=="\\prod") {
auto s1=tr.begin(it);
auto s2=s1;
++s2;
while(s2!=tr.end(it)) {
auto ac = k.properties.get<SelfAntiCommuting>(s1);
if(ac) {
if(subtree_compare(0, s1, s2)==0) {
tr.erase_children(it);
zero(it->multiplier);
ret=true;
break;
}
}
++s2;
++s1;
}
}
// Turn wedge products containing two identical siblings of odd degree to zero
// if they are not matrix objects.
if(nm=="\\wedge") {
auto s1=tr.begin(it);
auto s2=s1;
++s2;
while(s2!=tr.end(it)) {
if(subtree_compare(0, s1, s2)==0) {
auto df1 = k.properties.get<DifferentialForm>(s1);
auto df2 = k.properties.get<DifferentialForm>(s2);
auto mat1 = k.properties.get<Matrix>(s1);
auto mat2 = k.properties.get<Matrix>(s2);
if(df1 && df2 && !(mat1 && mat2) ) {
auto degree1 = df1->degree(k.properties, s1);
auto degree2 = df2->degree(k.properties, s2);
if(degree1.is_rational() && degree2.is_rational()) {
long d1 = to_long(degree1.to_rational());
long d2 = to_long(degree2.to_rational());
if(d1==d2 && d1%2==1) {
tr.erase_children(it);
zero(it->multiplier);
ret=true;
break;
}
}
}
}
++s2;
++s1;
}
}
// Handle edge cases where the product should collapse to a single node,
// e.g. when we have just a single factor, or when the product vanishes.
if(tr.number_of_children(it)==1) { // i.e. from '3*4*7*a*9'
ret=true;
tr.begin(it)->fl.bracket=it->fl.bracket;
tr.begin(it)->fl.parent_rel=it->fl.parent_rel;
tr.begin(it)->multiplier=it->multiplier;
tr.flatten(it);
it=tr.erase(it);
push_down_multiplier(k, tr, it);
}
else if(tr.number_of_children(it)==0) { // i.e. from '3*4*7*9'
ret=true;
it->name=name_set.insert("1").first;
}
// If any of the elements is an `\equals`, multiply the rest of the
// terms through on both sides. If there is more than one `\equals`, throw
// an error.
sib=tr.begin(it);
Ex::sibling_iterator equals_node=tr.end(it);
while(sib!=tr.end(it)) {
if(*sib->name=="\\equals") {
if(equals_node!=tr.end(it))
throw ConsistencyException("Encountered more than one equalities in a product; undefined.");
else
equals_node=sib;
}
++sib;
}
if(equals_node!=tr.end(it)) {
Ex::sibling_iterator lhs=tr.begin(equals_node);
Ex::sibling_iterator rhs=lhs;
++rhs;
auto lhsprod=tr.wrap(lhs, str_node("\\prod"));
auto rhsprod=tr.wrap(rhs, str_node("\\prod"));
sib=tr.begin(it);
bool left=true;
while(sib!=tr.end(it)) {
if(sib!=equals_node) {
if(left) {
tr.prepend_child(lhsprod, sib);
tr.prepend_child(rhsprod, sib);
}
else {
tr.append_child(lhsprod, sib);
tr.append_child(rhsprod, sib);
}
sib=tr.erase(sib);
}
else {
left=false;
++sib;
}
}
Ex::iterator tmp1(lhsprod), tmp2(rhsprod);
cleanup_dispatch(k, tr, tmp1);
cleanup_dispatch(k, tr, tmp2);
it=tr.flatten_and_erase(it);
ret=true;
}
return ret;
}
bool cleanup_sumlike(const Kernel& k, Ex&tr, Ex::iterator& it)
{
#ifdef DEBUG
std::cerr << "cleanup_sumlike, before: " << it << std::endl;
if(tr.number_of_children(it)==0)
std::cerr << "zero children on sum; " << it.node << ", tree = " << tr.begin() << std::endl;
#endif
assert(*it->name=="\\sum");
bool ret=false;
// Remove children which are 0
Ex::sibling_iterator sib=tr.begin(it);
while(sib!=tr.end(it)) {
if(sib->is_zero()) {
ret=true;
sib=tr.erase(sib);
}
else
++sib;
}
// Do not allow equalities as terms inside a sum if there are
// other terms present as well.
sib=tr.begin(it);
int equalities=0;
int nonequalities=0;
while(sib!=tr.end(it)) {
if(*sib->name=="\\equals") ++equalities;
else ++nonequalities;
if(equalities!=0 && nonequalities!=0)
throw ConsistencyException("Encountered an equality and a normal term in the same sum; not allowed.");
++sib;
}
if(equalities>1) { // This is a sum of at least 2 equalities.
// Combine all lhs and all rhs.
auto frst=tr.begin(it);
Ex::sibling_iterator lhs=tr.begin(frst);
Ex::sibling_iterator rhs=lhs;
++rhs;
// Ensure both lhs and rhs are sums.
if(*lhs->name!="\\sum")
lhs=tr.wrap(lhs, str_node("\\sum"));
if(*rhs->name!="\\sum")
rhs=tr.wrap(rhs, str_node("\\sum"));
Ex::sibling_iterator lhsend=tr.end(lhs);
Ex::sibling_iterator rhsend=tr.end(rhs);
sib=frst;
++sib;
while(sib!=tr.end(it)) {
// sib is an `\equals` node
Ex::sibling_iterator side=tr.begin(sib);
multiply(side->multiplier, *sib->multiplier);
tr.move_before(lhsend, side);
side=tr.begin(sib);
multiply(side->multiplier, *sib->multiplier);
tr.move_before(rhsend, side);
sib=tr.erase(sib);
}
#ifdef DEBUG
std::cerr << "got through equals cleanup" << std::endl;
std::cerr << it << std::endl;
#endif
Ex::iterator tmp1=lhs, tmp2=rhs;
cleanup_sumlike(k, tr, tmp1);
cleanup_sumlike(k, tr, tmp2);
}
// Flatten sums which are supposed to be flat.
long num=tr.number_of_children(it);
if(num==0) {
ret=true;
cadabra::zero(it->multiplier);
return ret;
}
if(num==1) {
if(tr.begin(it)->is_range_wildcard())
return ret;
ret=true;
multiply(tr.begin(it)->multiplier, *it->multiplier);
tr.flatten(it);
it=tr.erase(it);
}
else {
auto facs=tr.begin(it);
str_node::bracket_t btype_par=facs->fl.bracket;
while(facs!=tr.end(it)) {
if(facs->fl.bracket!=str_node::b_none) {
btype_par=facs->fl.bracket;
}
++facs;
}
facs=tr.begin(it);
while(facs!=tr.end(it)) {
if(*facs->name=="\\sum") {
auto terms=tr.begin(facs);
auto tmp=facs;
++tmp;
while(terms!=tr.end(facs)) {
multiply(terms->multiplier,*facs->multiplier);
terms->fl.bracket=btype_par;
++terms;
}
ret=true;
tr.flatten(facs);
tr.erase(facs);
facs=tmp;
}
else ++facs;
}
}
ret = ret || push_down_multiplier(k, tr, it);
#ifdef DEBUG
std::cerr << "cleanup_sumlike, after, " << ret << ": " << it << std::endl;
#endif
return ret;
}
bool push_down_multiplier(const Kernel& k, Ex& tr, Ex::iterator it)
{
bool ret=false;
auto mult=*it->multiplier;
if(mult==1)
return ret;
if(*it->name=="\\sum" || *it->name=="\\equals") {
auto sib=tr.begin(it);
while(sib!=tr.end(it)) {
ret=true;
multiply(sib->multiplier, mult);
push_down_multiplier(k, tr, sib);
++sib;
}
if(*it->multiplier!=1)
ret=true;
one(it->multiplier);
}
else if(*it->name=="\\components") {
Ex::sibling_iterator sib=tr.end(it);
--sib;
// Examine all index value sets and push the multiplier
// in there.
cadabra::do_list(tr, sib, [&](Ex::iterator nd) {
Ex::sibling_iterator val=tr.begin(nd);
++val;
if(mult!=1) {
ret=true;
multiply(val->multiplier, mult);
}
// Need to evaluate it; just putting it in '||' may lead to the compiler not evaluating it if
// 'ret' is already true!
bool tmp = push_down_multiplier(k, tr, val);
ret = ret || tmp;
return true;
});
if(*it->multiplier!=1)
ret=true;
one(it->multiplier);
}
return ret;
}
bool cleanup_components(const Kernel& k, Ex&tr, Ex::iterator& it)
{
assert(*it->name=="\\components");
bool ret=push_down_multiplier(k, tr, it);
// If this component node has no free indices, get rid of all
// the baggage and turn into a normal expression.
// std::cerr << "components cleanup: " << Ex(it) << std::endl;
auto comma=tr.begin(it);
if(*comma->name=="\\comma") { // If the first child is \comma, there are no indices: scalar.
if(tr.number_of_children(comma)==0) {
// Totally empty component node, can happen after an
// evaluate with no rules matching.
zero(it->multiplier);
ret=true;
return ret;
}
ret=true;
// std::cerr << "components node for a scalar" << std::endl;
tr.flatten(comma); // unwrap comma
comma=tr.erase(comma); // erase comma
tr.flatten(comma); // unwrap equals
comma=tr.erase(comma); // erase equals
comma=tr.erase(comma); // remove empty comma for index values
tr.flatten(it); // remove components node
it=tr.erase(it);
// std::cerr << Ex(it) << std::endl;
}
else {
while(comma!=tr.end(it)) {
if(*comma->name=="\\comma") {
if(tr.number_of_children(comma)==0) {
ret=true;
zero(it->multiplier);
}
// Still check if there is a component value for which the index
// values exactly match the index names. In that case, replace
// the entire components node with the component value.
auto equals = tr.begin(comma);
while(equals != tr.end(comma)) {
auto valcomma = tr.begin(equals);
auto valindices=tr.begin(valcomma);
auto expindices=tr.begin(it);
Ex_comparator comp(k.properties);
bool foundmatch=true;
while(valindices!=tr.end(valcomma)) {
auto match = comp.equal_subtree(valindices, expindices, Ex_comparator::useprops_t::not_at_top, true);
if(! (match==Ex_comparator::match_t::node_match || match==Ex_comparator::match_t::subtree_match)) {
foundmatch=false;
break;
}
++expindices;
++valindices;
}
if(foundmatch) {
// Yep, we can unwrap this component and replace it with the
// single value.
auto erase=tr.begin(it);
while(erase!=comma) // erase indices from \components
erase=tr.erase(erase);
auto eit=tr.begin(comma);
while(eit!=tr.end(comma)) { // erase all component values which we do not need.
if(eit==equals) ++eit;
else eit=tr.erase(eit);
}
tr.flatten(comma); // unwrap comma
comma=tr.erase(comma); // erase comma
tr.flatten(comma); // unwrap equals
comma=tr.erase(comma); // erase equals
comma=tr.erase(comma); // remove comma node (plus its children) for index values
tr.flatten(it); // remove components node
it=tr.erase(it);
return true;
}
++equals;
}
// None of the index value sets match the index names. If the index names are
// coordinates, this means that the value of this component is zero.
auto expindices=tr.begin(it);
bool all_coordinates=true;
while(*expindices->name!="\\comma") {
if(expindices->is_integer()==false && k.properties.get<Coordinate>(expindices, true)==0) {
all_coordinates=false;
break;
}
++expindices;
}
if(all_coordinates) {
zero(it->multiplier);
return true;
}
return ret;
}
++comma;
}
// Anonymous tensor with all components vanishing.
ret=true;
zero(it->multiplier);
}
return ret;
}
bool cleanup_partialderivative(const Kernel&, Ex& tr, Ex::iterator& it)
{
// Nested derivatives with the same name should be flattened, but
// only if both the outer derivative and the inner derivative have
// an index (otherwise D(D(A)) becomes D(A) which is wrong).
// Find first non-index child.
bool ret=false;
Ex::sibling_iterator sib=tr.begin(it);
if(sib==tr.end(it)) return ret;
while(sib->is_index()) {
++sib;
if(sib==tr.end(it)) {
zero(it->multiplier);
return true;
}
if(sib==tr.end(it))
throw ConsistencyException("Encountered PartialDerivative object without argument on which to act.");
}
// FIXME: this ignores that derivatives can have functional child
// nodes which are interpreted as 'object wrt. with derivative should be taken'.
if(it->name == sib->name) {
if(Algorithm::number_of_direct_indices(it)>0 && Algorithm::number_of_direct_indices(sib)>0) {
multiply(it->multiplier, *sib->multiplier);
tr.flatten(sib);
tr.erase(sib);
ret=true;
}
}
return ret;
}
bool cleanup_derivative(const Kernel& k, Ex& tr, Ex::iterator& it)
{
bool ret=false;
if(Algorithm::number_of_direct_indices(it) == tr.number_of_children(it)) {
// This is a derivative acting on nothing, always occurs
// when all constants have been moved out.
zero(it->multiplier);
ret=true;
return ret;
}
auto sib=tr.begin(it);
while(sib!=tr.end(it)) {
if(sib->fl.parent_rel==str_node::p_none) {
if(*sib->name=="\\equals") {
// FIXME: this should probably be taken out for generalisation.
auto lhs = tr.begin(sib);
auto rhs = lhs;
++rhs;
auto lhswrap = tr.wrap(lhs, *it);
auto rhswrap = tr.wrap(rhs, *it);
multiply(lhswrap->multiplier, *it->multiplier);
multiply(rhswrap->multiplier, *it->multiplier);
auto sib2=tr.begin(it);
while(sib2!=tr.end(it)) {
if(sib2!=sib) {
tr.insert_subtree(lhs, sib2);
tr.insert_subtree(rhs, sib2);
sib2=tr.erase(sib2);
}
else ++sib2;
}
it=tr.flatten(it);
it=tr.erase(it);
Ex::iterator tmp1(lhswrap), tmp2(rhswrap);
cleanup_dispatch(k, tr, tmp1);
cleanup_dispatch(k, tr, tmp2);
ret=true;
break;
}
}
++sib;
}
return ret;
}
bool cleanup_numericalflat(const Kernel&, Ex& tr, Ex::iterator& it)
{
bool ret=false;
//tr.print_recursive_treeform(std::cerr, it);
// Collect all multipliers and remove resulting '1' nodes.
auto facs=tr.begin(it);
multiplier_t factor=1;
while(facs!=tr.end(it)) {
// std::cerr << "at " << *facs << std::endl;
if(facs->is_index()==false) { // Do not collect the number in e.g. \partial_{4}{A}.
factor*=*facs->multiplier;
if(facs->is_rational()) {
multiplier_t tmp; // FIXME: there is a bug in gmp which means we have to put init on next line.
tmp=(*facs->name).c_str();
ret=true;
factor*=tmp;
facs=tr.erase(facs);
if(facs==tr.end())
facs=tr.end(it);
}
else {
if(*facs->multiplier!=1)
ret=true;
one(facs->multiplier);
++facs;
}
}
else ++facs;
}
if(factor!=1)
ret=true;
multiply(it->multiplier,factor);
return ret;
}
bool cleanup_diagonal(const Kernel& k, Ex& tr, Ex::iterator& it)
{
bool ret=false;
if(tr.number_of_children(it)!=2) return ret;
auto c1=tr.begin(it);
auto c2(c1);
++c2;
// Two different numerical indices will lead to zero.
if(c1->is_rational() && c2->is_rational())
if(c1->multiplier != c2->multiplier) {
ret=true;
zero(it->multiplier);
}
// Two different Coordinate indices will lead to zero.
if(!(c1->is_rational() && c2->is_rational())) {
auto *c1coord = k.properties.get<Coordinate>(c1, true);
auto *c2coord = k.properties.get<Coordinate>(c2, true);
if(c1coord!=0 && c2coord!=0) {
if(subtree_compare(0, c1, c2)!=0) {
ret=true;
zero(it->multiplier);
}
}
}
return ret;
}
bool cleanup_kronecker(const Kernel&, Ex& tr, Ex::iterator& it)
{
bool ret=false;
if(tr.number_of_children(it)!=2) return ret;
auto c1=tr.begin(it);
auto c2(c1);
++c2;
if(c1->is_rational() && c2->is_rational()) {
if(c1->multiplier != c2->multiplier) {
ret=true;
zero(it->multiplier);
}
else {
// ::one(it->multiplier);
tr.erase_children(it);
ret=true;
it->name=name_set.insert("1").first;
}
}
return ret;
}
bool cleanup_exterior_derivative(const Kernel& k, Ex& tr, Ex::iterator& it)
{
// FIXME: could have this act on a sum as well.
if(tr.number_of_children(it)==1) {
auto sib=tr.begin(it);
const ExteriorDerivative *ed1=k.properties.get<ExteriorDerivative>(it);
const ExteriorDerivative *ed2=k.properties.get<ExteriorDerivative>(sib);
if(ed1==ed2) {
zero(it->multiplier);
return true;
}
}
return false;
}
bool cleanup_comma(const Kernel& k, Ex& tr, Ex::iterator& it)
{
if(*it->multiplier!=1) {
Ex::sibling_iterator sib = tr.begin(it);
while(sib!=tr.end(it)) {
multiply(sib->multiplier, *it->multiplier);
++sib;
}
one(it->multiplier);
return true;
}
else return false;
}
bool cleanup_tie(const Kernel& k, Ex& tr, Ex::iterator& it)
{
// Are all siblings lists?
Ex::sibling_iterator sib = tr.begin(it);
while(sib!=tr.end(it)) {
if(*sib->name!="\\comma")
return false;
++sib;
}
// All siblings are lists. Join them together into one
// long list.
it->name = name_set.insert("\\comma").first;
sib=tr.begin(it);
while(sib!=tr.end(it)) {
auto nxt = sib;
++nxt;
tr.flatten_and_erase(sib);
sib=nxt;
}
return true;
}
void cleanup_dispatch_deep(const Kernel& k, Ex& tr, dispatcher_t dispatch)
{
Ex::iterator top=tr.begin();
cleanup_dispatch_deep(k, tr, top, dispatch);
}
void cleanup_dispatch_deep(const Kernel& k, Ex& tr, Ex::iterator&, dispatcher_t dispatch)
{
// Cleanup the entire tree starting from the deepest nodes and
// working upwards.
// This duplicates work of Algorithm::apply, but we want to have an
// independent cleanup unit which does not rely on things we may
// want to change in Algorithm::apply in the future, and we do not
// want to make recursive calls into that function either. And it is
// simple enough anyway.
// do_subtree(tr, top, [&dispatch, &tr, &k](Ex::iterator it) {
// dispatch(k, tr, it);
// return it;
// });
Ex::post_order_iterator it=tr.begin();
it.descend_all();
while(it!=tr.end()) {
Ex::post_order_iterator next=it;
++next;
Ex::iterator tmp=it;
dispatch(k, tr, tmp);
it=next;
}
}
}
|