1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
|
/*
Cadabra: a field-theory motivated computer algebra system.
Copyright (C) 2001-2014 Kasper Peeters <kasper.peeters@phi-sci.com>
This program is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
length vector
normal combinations: one element, value=total length.
normal permutations: n elements, each equal to 1.
*/
#pragma once
#include <vector>
#include <cassert>
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <map>
namespace combin {
typedef std::vector<unsigned int> range_t;
typedef std::vector<range_t> range_vector_t;
typedef std::vector<int> weights_t;
unsigned long factorial(unsigned int x);
/// sum of elements
long vector_sum(const std::vector<int>&);
/// product of elements
unsigned long vector_prod(const std::vector<unsigned int>&);
/// product of factorials of elements
unsigned long vector_prod_fact(const std::vector<unsigned int>&);
bool operator==(const std::vector<unsigned int>&, const std::vector<unsigned int>&);
/// compute a hash value for a vector of unsigned ints
long hash(const std::vector<unsigned int>&);
template<class T>
class combinations_base {
public:
combinations_base();
combinations_base(const std::vector<T>&);
virtual ~combinations_base();
void permute(long start=-1, long end=-1);
virtual void clear();
virtual void clear_results();
unsigned int sum_of_sublengths() const;
void set_unit_sublengths();
unsigned int multiplier(const std::vector<T>&) const;
unsigned int total_permutations() const; // including the ones not stored
enum weight_cond { weight_equals, weight_less, weight_greater };
unsigned int block_length;
std::vector<unsigned int> sublengths;
range_vector_t input_asym;
std::vector<T> original;
bool multiple_pick;
std::vector<weights_t> weights;
std::vector<int> max_weights;
std::vector<weight_cond> weight_conditions;
unsigned int sub_problem_blocksize; // when non-zero, do permutations within
protected:
virtual void vector_generated(const std::vector<unsigned int>&)=0;
virtual bool entry_accepted(unsigned int current) const;
std::vector<unsigned int> temparr;
long start_, end_, vector_generated_called_;
std::vector<int> current_weight;
private:
bool is_allowed_by_weight_constraints(unsigned int i);
bool final_weight_constraints_check() const;
void update_weights(unsigned int i);
void restore_weights(unsigned int i);
void nextstep(unsigned int current, unsigned int fromalgehad, unsigned int groupindex,
std::vector<bool> algehad);
};
template<class T>
class combinations : public combinations_base<T> {
public:
typedef typename std::vector<std::vector<T> > permuted_sets_t;
typedef typename permuted_sets_t::const_iterator const_iterator;
combinations();
combinations(const std::vector<T>&);
virtual ~combinations();
virtual void clear();
virtual void clear_results();
const std::vector<T>& operator[](unsigned int) const;
int ordersign(unsigned int) const;
unsigned int size() const;
unsigned int multiplier(unsigned int) const;
protected:
virtual void vector_generated(const std::vector<unsigned int>&);
private:
permuted_sets_t storage;
};
template<class T>
class symmetriser;
template<class T>
class symm_helper : public combinations_base<T> {
public:
symm_helper(symmetriser<T>&);
virtual void clear();
int current_multiplicity;
protected:
bool first_one;
symmetriser<T>& owner_;
virtual void vector_generated(const std::vector<unsigned int>&);
};
template<class T>
class symm_val_helper : public combinations_base<T> {
public:
symm_val_helper(symmetriser<T>&);
virtual void clear();
int current_multiplicity;
protected:
bool first_one;
symmetriser<T>& owner_;
virtual void vector_generated(const std::vector<unsigned int>&);
};
template<class T>
class symmetriser {
public:
symmetriser();
void apply_symmetry(long start=-1, long end=-1);
std::vector<T> original;
unsigned int block_length;
std::vector<unsigned int> permute_blocks; // offset in unit elements! (not in blocks)
std::vector<T> value_permute;
int permutation_sign;
std::vector<unsigned int> sublengths; // refers to position within permute_blocks
range_vector_t input_asym; // as in combinations_base
range_vector_t sublengths_scattered; // sublengths, in original, but not connected.
/// Convert vectors of values to vectors of locations in the original
/// (mainly useful to create input_asym for permutation by value).
range_t values_to_locations(const std::vector<T>& values) const;
const std::vector<T>& operator[](unsigned int) const;
int signature(unsigned int) const;
void set_multiplicity(unsigned int pos, int val);
unsigned int size() const;
void clear();
/// Collect equal entries, and adjust the multiplier field accordingly.
void collect();
void remove_multiplicity_zero();
friend class symm_helper<T>;
friend class symm_val_helper<T>;
private:
symm_helper<T> sh_;
symm_val_helper<T> svh_;
unsigned int current_;
std::vector<std::vector<T> > originals;
std::vector<int> multiplicity;
};
int determine_intersection_ranges(const range_vector_t& prod,
const range_vector_t& indv,
range_vector_t& target);
template<class iterator1, class iterator2>
int ordersign(iterator1 b1, iterator1 e1, iterator2 b2, iterator2 e2, int stepsize=1);
template<class iterator1>
int ordersign(iterator1 b1, iterator1 e1);
template<class T>
T fact(T x);
template<class T>
std::ostream& operator<<(std::ostream& str, const symmetriser<T>& sym);
/*
I assume PI consists of the integers 1 to N.
It can be done with O(N) comparisons and transpositions of integers
in the list.
sign:= 1;
for i from 1 to N do
while PI[i] <> i do
interchange PI[i] and PI[PI[i]];
sign:= -sign
od
od
*/
template<class iterator1, class iterator2>
int ordersign(iterator1 b1, iterator1 e1, iterator2 b2, iterator2 e2, int stepsize)
{
int sign=1;
std::vector<bool> crossedoff(std::distance(b1,e1),false);
while(b1!=e1) {
int otherpos=0;
iterator2 it=b2;
while(it!=e2) {
if( (*it)==(*b1) && crossedoff[otherpos]==false) {
crossedoff[otherpos]=true;
break;
}
else {
if(!crossedoff[otherpos])
sign=-sign;
}
it+=stepsize;
++otherpos;
}
b1+=stepsize;
}
return sign;
}
//template<class iterator1, class iterator2, class comparator>
//int ordersign(iterator1 b1, iterator1 e1, iterator2 b2, iterator2 e2, comparator cmp, int stepsize)
// {
// int sign=1;
// std::vector<bool> crossedoff(std::distance(b1,e1),false);
// while(b1!=e1) {
// int otherpos=0;
// iterator2 it=b2;
// while(it!=e2) {
// if(cmp((*it), (*b1)) && crossedoff[otherpos]==false) {
// crossedoff[otherpos]=true;
// break;
// }
// else {
// if(!crossedoff[otherpos])
// sign=-sign;
// }
// it+=stepsize;
// ++otherpos;
// }
// b1+=stepsize;
// }
// return sign;
// }
template<class iterator1>
int ordersign(iterator1 b1, iterator1 e1)
{
std::vector<unsigned int> fil;
for(int k=0; k<distance(b1,e1); ++k)
fil.push_back(k);
return ordersign(fil.begin(), fil.end(), b1, e1);
}
template<class T>
T fact(T x)
{
T ret=1;
assert(x>=0);
while(x!=0) {
ret*=x--;
}
return ret;
}
// Implementations
template<class T>
combinations_base<T>::combinations_base()
: block_length(1), multiple_pick(false), sub_problem_blocksize(0)
{
}
template<class T>
combinations_base<T>::combinations_base(const std::vector<T>& oa)
: block_length(1), original(oa), multiple_pick(false), sub_problem_blocksize(0)
{
}
template<class T>
combinations<T>::combinations()
: combinations_base<T>()
{
}
template<class T>
combinations<T>::combinations(const std::vector<T>& oa)
: combinations_base<T>(oa)
{
}
template<class T>
combinations_base<T>::~combinations_base()
{
}
template<class T>
combinations<T>::~combinations()
{
}
template<class T>
void combinations<T>::vector_generated(const std::vector<unsigned int>& toadd)
{
++this->vector_generated_called_;
if((this->start_==-1 || this->vector_generated_called_ >= this->start_) &&
(this->end_==-1 || this->vector_generated_called_ < this->end_)) {
std::vector<T> newone(toadd.size()*this->block_length);
for(unsigned int i=0; i<toadd.size(); ++i)
for(unsigned int bl=0; bl<this->block_length; ++bl)
newone[i*this->block_length+bl]=this->original[toadd[i]*this->block_length+bl];
storage.push_back(newone);
}
}
template<class T>
bool combinations_base<T>::entry_accepted(unsigned int) const
{
return true;
}
template<class T>
void combinations_base<T>::permute(long start, long end)
{
start_=start;
end_=end;
vector_generated_called_=-1;
// Initialise weight handling.
current_weight.clear();
current_weight.resize(weights.size(), 0);
for(unsigned int i=0; i<weights.size(); ++i)
assert(weights[i].size() == original.size()/block_length);
if(weights.size()>0) {
if(weight_conditions.size()==0)
weight_conditions.resize(weights.size(), weight_equals);
else assert(weight_conditions.size()==weights.size());
}
else assert(weight_conditions.size()==0);
// Sublength handling.
assert(sublengths.size()!=0);
unsigned int len=sum_of_sublengths();
// Consistency checks.
assert(original.size()%block_length==0);
if(!multiple_pick)
assert(len*block_length<=original.size());
for(unsigned int i=0; i<this->input_asym.size(); ++i)
std::sort(this->input_asym[i].begin(), this->input_asym[i].end());
temparr=std::vector<unsigned int>(len/* *block_length*/);
std::vector<bool> algehad(original.size()/block_length,false);
nextstep(0,0,0,algehad);
}
template<class T>
void combinations_base<T>::clear()
{
block_length=1;
sublengths.clear();
this->input_asym.clear();
original.clear();
weights.clear();
max_weights.clear();
weight_conditions.clear();
sub_problem_blocksize=0;
temparr.clear();
current_weight.clear();
}
template<class T>
void combinations_base<T>::clear_results()
{
temparr.clear();
}
template<class T>
void combinations<T>::clear()
{
storage.clear();
combinations_base<T>::clear();
}
template<class T>
void combinations<T>::clear_results()
{
storage.clear();
combinations_base<T>::clear_results();
}
template<class T>
const std::vector<T>& combinations<T>::operator[](unsigned int i) const
{
assert(i<storage.size());
return storage[i];
}
template<class T>
unsigned int combinations<T>::size() const
{
return storage.size();
}
template<class T>
unsigned int combinations_base<T>::sum_of_sublengths() const
{
unsigned int ret=0;
for(unsigned int i=0; i<sublengths.size(); ++i)
ret+=sublengths[i];
return ret;
}
template<class T>
unsigned int combinations_base<T>::total_permutations() const
{
return vector_generated_called_+1;
}
template<class T>
void combinations_base<T>::set_unit_sublengths()
{
sublengths.clear();
for(unsigned int i=0; i<original.size()/block_length; ++i)
sublengths.push_back(1);
}
template<class T>
int combinations<T>::ordersign(unsigned int num) const
{
assert(num<storage.size());
return combin::ordersign(storage[0].begin(), storage[0].end(),
storage[num].begin(), storage[num].end(), this->block_length);
}
template<class T>
unsigned int combinations<T>::multiplier(unsigned int num) const
{
return combinations_base<T>::multiplier(this->storage[num]);
}
template<class T>
unsigned int combinations_base<T>::multiplier(const std::vector<T>& stor) const
{
unsigned long numerator=1;
for(unsigned int i=0; i<this->input_asym.size(); ++i)
numerator*=fact(this->input_asym[i].size());
unsigned long denominator=1;
for(unsigned int i=0; i<this->input_asym.size(); ++i) {
// for each input asym, and for each output asym, count
// the number of overlap elements.
unsigned int current=0;
for(unsigned int k=0; k<this->sublengths.size(); ++k) {
if(this->sublengths[k]>1) {
unsigned int overlap=0;
for(unsigned int slc=0; slc<this->sublengths[k]; ++slc) {
for(unsigned int j=0; j<this->input_asym[i].size(); ++j) {
unsigned int index=0;
while(!(stor[current]==this->original[index]))
++index;
if(index==this->input_asym[i][j])
++overlap;
}
++current;
}
if(overlap>0)
denominator*=fact(overlap);
// FIXME: for each overlap thus found, divide out by a factor
// due to the fact that output asym ranges can overlap.
// well, that's not right either.
}
else ++current;
}
}
return numerator/denominator;
}
template<class T>
bool combinations_base<T>::is_allowed_by_weight_constraints(unsigned int i)
{
if(weights.size()==0) return true;
for(unsigned int cn=0; cn<current_weight.size(); ++cn) {
if(weight_conditions[cn]==weight_less)
if(current_weight[cn]+weights[cn][i] >= max_weights[cn])
return false;
}
return true;
}
template<class T>
bool combinations_base<T>::final_weight_constraints_check() const
{
for(unsigned int cn=0; cn<current_weight.size(); ++cn) {
switch(weight_conditions[cn]) {
case weight_equals:
if(current_weight[cn]!=max_weights[cn])
return false;
break;
case weight_less:
break;
case weight_greater:
if(current_weight[cn]<=max_weights[cn])
return false;
break;
}
}
return true;
}
template<class T>
void combinations_base<T>::update_weights(unsigned int i)
{
if(weights.size()==0) return;
for(unsigned int cn=0; cn<current_weight.size(); ++cn)
current_weight[cn]+=weights[cn][i];
}
template<class T>
void combinations_base<T>::restore_weights(unsigned int i)
{
if(weights.size()==0) return;
for(unsigned int cn=0; cn<current_weight.size(); ++cn)
current_weight[cn]-=weights[cn][i];
}
template<class T>
void combinations_base<T>::nextstep(unsigned int current, unsigned int lowest_in_group, unsigned int groupindex,
std::vector<bool> algehad)
{
unsigned int grouplen=0;
for(unsigned int i=0; i<=groupindex; ++i)
grouplen+=sublengths[i];
if(current==grouplen) { // group is filled
++groupindex;
if(groupindex==sublengths.size()) {
if(final_weight_constraints_check())
vector_generated(temparr);
return;
}
lowest_in_group=0;
}
unsigned int starti=0, endi=original.size()/block_length;
if(sub_problem_blocksize>0) {
starti=current-current%sub_problem_blocksize;
endi=starti+sub_problem_blocksize;
}
for(unsigned int i=starti; i<endi; i++) {
if(!algehad[i] || multiple_pick) {
bool discard=false;
if(is_allowed_by_weight_constraints(i)) {
// handle input_asym
for(unsigned k=0; k<this->input_asym.size(); ++k) {
for(unsigned int kk=0; kk<this->input_asym[k].size(); ++kk) {
if(i==this->input_asym[k][kk]) {
unsigned int k2=kk;
while(k2!=0) {
--k2;
if(!algehad[this->input_asym[k][k2]]) {
// std::cout << "discarding " << std::endl;
discard=true;
break;
}
}
}
}
if(discard) break;
}
}
else discard=true;
if(!discard)
if(i+1>lowest_in_group) {
algehad[i]=true;
update_weights(i);
temparr[current]=i;
// for(unsigned bl=0; bl<block_length; ++bl)
// temparr[current*block_length+bl]=original[i*block_length+bl];
if(entry_accepted(current)) {
nextstep(current+1, i, groupindex, algehad);
}
algehad[i]=false;
restore_weights(i);
}
}
}
}
template<class T>
symmetriser<T>::symmetriser()
: block_length(1), permutation_sign(1), sh_(*this), svh_(*this)
{
}
template<class T>
void symmetriser<T>::clear()
{
original.clear();
block_length=1;
permute_blocks.clear();
value_permute.clear();
permutation_sign=1;
sublengths.clear();
input_asym.clear();
sublengths_scattered.clear();
originals.clear();
multiplicity.clear();
}
template<class T>
void symmetriser<T>::collect()
{
std::cout << "collecting" << std::endl;
// Fill the hash map: entries which are equal have to sit in the same
// bin, but there may be other entries in that bin which still have to
// be separated.
std::multimap<long, unsigned int> hashmap;
for(unsigned int i=0; i<originals.size(); ++i)
hashmap.insert(std::pair<long, unsigned int>(hash(originals[i]), i));
// Collect equal vectors.
std::multimap<long, unsigned int>::iterator it=hashmap.begin(), thisbin1, thisbin2, tmpit;
while(it!=hashmap.end()) {
long current_hash=it->first;
thisbin1=it;
while(thisbin1!=hashmap.end() && thisbin1->first==current_hash) {
thisbin2=thisbin1;
++thisbin2;
while(thisbin2!=hashmap.end() && thisbin2->first==current_hash) {
if(originals[(*thisbin1).second]==originals[(*thisbin2).second]) {
multiplicity[(*thisbin1).second]+=multiplicity[(*thisbin2).second];
multiplicity[(*thisbin2).second]=0;
tmpit=thisbin2;
++tmpit;
hashmap.erase(thisbin2);
thisbin2=tmpit;
}
else ++thisbin2;
}
++thisbin1;
}
it=thisbin1;
}
remove_multiplicity_zero();
}
template<class T>
void symmetriser<T>::remove_multiplicity_zero()
{
std::vector<std::vector<T> > new_originals;
std::vector<int> new_multiplicity;
for(unsigned int k=0; k<originals.size(); ++k) {
if(multiplicity[k]!=0) {
new_originals.push_back(originals[k]);
new_multiplicity.push_back(multiplicity[k]);
}
}
originals=new_originals;
multiplicity=new_multiplicity;
}
template<class T>
void symmetriser<T>::apply_symmetry(long start, long end)
{
unsigned int current_length=originals.size();
if(current_length==0) {
originals.push_back(original);
multiplicity.push_back(1);
current_length=1;
}
// Some options are mutually exclusive.
assert(permute_blocks.size()>0 || value_permute.size()>0);
assert(sublengths.size()==0 || sublengths_scattered.size()==0);
if(permute_blocks.size()==0) { // permute by value
assert(value_permute.size()!=0);
if(input_asym.size()==0 && sublengths_scattered.size()==0) {
// When permuting by value, we can do the permutation once,
// and then figure out (see vector_generated of symm_val_helper),
// for each permutation which is already stored in the symmetriser,
// how the objects are moved.
current_=current_length;
svh_.clear();
svh_.original=value_permute;
svh_.input_asym.clear();
svh_.sublengths=sublengths;
svh_.current_multiplicity=combin::vector_prod_fact(sublengths);
if(svh_.sublengths.size()==0)
svh_.set_unit_sublengths();
svh_.permute(start, end);
// Since we do not divide by the number of permutations, we need
// to adjust the multiplicity of all the originals.
// for(unsigned int i=0; i<current_; ++i)
// multiplicity[i] *= svh_.current_multiplicity;
}
else {
// However, when there is input_asym or sublength_scattered
// are present, we cannot just do the permutation on the
// values and then put them into all existing sets, since the
// overlap of input_asym with the objects to be permuted will
// be different for every set. Therefore, we have to apply
// the permutation algorithm separately to each and every set
// which is already stored in the symmetriser. We convert
// the problem to a permute-by-location problem.
for(unsigned int i=0; i<current_length; ++i) {
current_=i;
sh_.clear();
assert(sublengths.size()==0); // not yet implemented
std::vector<unsigned int> my_permute_blocks;
// Determine the location of the values.
for(unsigned int k=0; k<value_permute.size(); ++k) {
for(unsigned int m=0; m<originals[i].size(); ++m) {
if(originals[i][m]==value_permute[k]) {
my_permute_blocks.push_back(m); // FIXME: non-unit block length?
break;
}
}
}
// std::cout << "handling sublengths" << std::endl;
if(sublengths_scattered.size()>0) {
// Re-order my_permute_blocks in such a way that the objects which sit
// in one sublength_scattered range are consecutive. This does not make
// any difference for the sign.
sh_.sublengths.clear();
std::vector<unsigned int> reordered_permute_blocks;
for(unsigned int m=0; m<sublengths_scattered.size(); ++m) {
int overlap=0;
for(unsigned int mm=0; mm<sublengths_scattered[m].size(); ++mm) {
// std::cout << "trying to find " << sublengths_scattered[m][mm] << " " << std::flush;
std::vector<unsigned int>::iterator it=my_permute_blocks.begin();
while(it!=my_permute_blocks.end()) {
if((*it)==sublengths_scattered[m][mm]) {
// std::cout << " found " << std::endl;
reordered_permute_blocks.push_back(*it);
my_permute_blocks.erase(it);
++overlap;
break;
}
++it;
}
// std::cout << std::endl;
}
if(overlap>0)
sh_.sublengths.push_back(overlap);
}
std::vector<unsigned int>::iterator it=my_permute_blocks.begin();
while(it!=my_permute_blocks.end()) {
reordered_permute_blocks.push_back(*it);
// std::cout << "adding one" << std::endl;
sh_.sublengths.push_back(1);
++it;
}
my_permute_blocks=reordered_permute_blocks;
// std::cout << "handled sublengths" << std::endl;
}
// Put to-be-permuted data in originals.
for(unsigned int k=0; k<my_permute_blocks.size(); ++k) {
for(unsigned int kk=0; kk<block_length; ++kk) {
sh_.original.push_back(originals[i][my_permute_blocks[k]+kk]);
}
}
combin::range_vector_t subprob_input_asym;
sh_.current_multiplicity=1;
if(input_asym.size()>0) {
// Make a proper input_asym which refers to object locations
// in the permute blocks array, rather than in the original
// array.
for(unsigned int k=0; k<input_asym.size(); ++k) {
range_t newrange;
for(unsigned int m=0; m<input_asym[k].size(); ++m) {
// search in my_permute_blocks
for(unsigned int kk=0; kk<my_permute_blocks.size(); ++kk)
if(my_permute_blocks[kk]==input_asym[k][m]) {
newrange.push_back(kk);
break;
}
}
if(newrange.size()>1) {
subprob_input_asym.push_back(newrange);
sh_.current_multiplicity*=fact(newrange.size());
}
}
}
if(sh_.sublengths.size()==0)
sh_.set_unit_sublengths();
sh_.current_multiplicity*=combin::vector_prod_fact(sh_.sublengths);
// debugging
// std::cout << "my_permute_blocks: ";
// for(unsigned int ii=0; ii<my_permute_blocks.size(); ++ii)
// std::cout << my_permute_blocks[ii] << " ";
// std::cout << std::endl;
// std::cout << "sublengths: ";
// for(unsigned int ii=0; ii<sh_.sublengths.size(); ++ii)
// std::cout << sh_.sublengths[ii] << " ";
// std::cout << std::endl;
// Debugging output:
// std::cout << sh_.current_multiplicity << " asym: ";
// if(subprob_input_asym.size()>0) {
// for(unsigned int k=0; k<subprob_input_asym[0].size(); ++k)
// std::cout << subprob_input_asym[0][k] << " ";
// std::cout << std::endl;
// std::cout << subprob_input_asym.size() << std::endl;
// }
// else std::cout << "no asym" << std::endl;
permute_blocks=my_permute_blocks;
sh_.block_length=block_length;
sh_.input_asym=subprob_input_asym;
sh_.permute(start, end);
// Since we do not divide by the number of permutations, we need
// to adjust the multiplicity of the original.
multiplicity[i]*=sh_.current_multiplicity;
permute_blocks.clear(); // restore just in case
// for(unsigned int m=0; m<originals.size(); ++m) {
// for(unsigned int mm=0; mm<originals[m].size(); ++mm)
// std::cout << originals[m][mm] << " ";
// std::cout << std::endl;
// }
// break;
}
}
}
else { // permute by location
assert(value_permute.size()==0);
assert(permute_blocks.size()>0);
// When permuting by location, we have to apply the permutation
// algorithm separately to each and every permutation which is
// already stored in the symmetriser.
for(unsigned int i=0; i<current_length; ++i) {
current_=i;
sh_.clear();
for(unsigned int k=0; k<permute_blocks.size(); ++k) {
for(unsigned int kk=0; kk<block_length; ++kk) {
sh_.original.push_back(originals[i][permute_blocks[k]+kk]);
}
// sh_.sublengths.push_back(1);
}
assert(sublengths.size()==0); // not yet implemented
// sh_.sublengths=sublengths;
if(sh_.sublengths.size()==0)
sh_.set_unit_sublengths();
sh_.block_length=block_length;
sh_.input_asym=input_asym;
sh_.permute(start, end);
}
}
if(start!=-1) { // if start is not the first, have to erase the first
originals.erase(originals.begin());
multiplicity.erase(multiplicity.begin());
}
}
template<class T>
const std::vector<T>& symmetriser<T>::operator[](unsigned int i) const
{
assert(i<originals.size());
return originals[i];
}
template<class T>
unsigned int symmetriser<T>::size() const
{
return originals.size();
}
template<class T>
range_t symmetriser<T>::values_to_locations(const std::vector<T>& values) const
{
range_t ret;
for(unsigned int i=0; i<values.size(); ++i) {
// std::cout << "finding " << values[i] << std::endl;
for(unsigned int j=0; j<value_permute.size(); ++j) {
// std::cout << value_permute[j] << " ";
if(value_permute[i]==value_permute[j]) {
// std::cout << "found" << std::endl;
ret.push_back(j);
break;
}
// std::cout << std::endl;
}
}
return ret;
}
template<class T>
symm_val_helper<T>::symm_val_helper(symmetriser<T>& tt)
: current_multiplicity(1), first_one(true), owner_(tt)
{
}
template<class T>
void symm_val_helper<T>::clear()
{
first_one=true;
combinations_base<T>::clear();
}
template<class T>
void symm_val_helper<T>::vector_generated(const std::vector<unsigned int>& vec)
{
++this->vector_generated_called_;
if(first_one) {
first_one=false;
}
else {
if((this->start_==-1 || this->vector_generated_called_ >= this->start_) &&
(this->end_==-1 || this->vector_generated_called_ < this->end_)) {
// Since we permuted by value, we can do this permutation in one
// shot on all previously generated sets.
for(unsigned int i=0; i<owner_.current_; ++i) {
// owner_.multiplicity[i] *= current_multiplicity;
owner_.originals.push_back(owner_.originals[i]);
// Take care of the multiplicity & sign.
int multiplicity=owner_.multiplicity[i] * current_multiplicity;
if(owner_.permutation_sign==-1)
multiplicity*=ordersign(vec.begin(), vec.end());
owner_.multiplicity.push_back(multiplicity); //sign==1?true:false);
// We now have to find the permuted objects in the larger
// "original" set, and re-order these appropriately.
unsigned int loc=owner_.originals.size()-1;
for(unsigned int j=0; j<vec.size(); ++j) {
for(unsigned int k=0; k<owner_.originals[i].size(); ++k) {
if(owner_.originals[i][k]==this->original[j]) {
owner_.originals[loc][k]=this->original[vec[j]];
break;
}
}
}
}
}
}
}
template<class T>
symm_helper<T>::symm_helper(symmetriser<T>& tt)
: current_multiplicity(1), first_one(true), owner_(tt)
{
}
template<class T>
void symm_helper<T>::clear()
{
first_one=true;
combinations_base<T>::clear();
}
template<class T>
int symmetriser<T>::signature(unsigned int i) const
{
assert(i<multiplicity.size());
return multiplicity[i]; //?1:-1;
}
template<class T>
void symmetriser<T>::set_multiplicity(unsigned int i, int val)
{
assert(i<multiplicity.size());
multiplicity[i]=val;
}
template<class T>
void symm_helper<T>::vector_generated(const std::vector<unsigned int>& vec)
{
++this->vector_generated_called_;
if(first_one) {
first_one=false;
}
else {
if((this->start_==-1 || this->vector_generated_called_ >= this->start_) &&
(this->end_==-1 || this->vector_generated_called_ < this->end_)) {
// std::cout << "produced ";
// for(unsigned int m=0; m<vec.size(); ++m)
// std::cout << vec[m] << " ";
// std::cout << std::endl;
// owner_.multiplicity[owner_.current_] *= current_multiplicity;
owner_.originals.push_back(owner_.originals[owner_.current_]);
unsigned int siz=owner_.originals.size()-1;
// Take care of the permutation sign.
int multiplicity=owner_.multiplicity[owner_.current_] * current_multiplicity;
if(owner_.permutation_sign==-1)
multiplicity*=ordersign(vec.begin(), vec.end());
owner_.multiplicity.push_back(multiplicity);
for(unsigned int k=0; k<owner_.permute_blocks.size(); ++k) {
for(unsigned int kk=0; kk<owner_.block_length; ++kk) {
assert(owner_.permute_blocks[k]+kk<owner_.originals[0].size());
owner_.originals[siz][owner_.permute_blocks[k]+kk]=
owner_.originals[owner_.current_][owner_.permute_blocks[vec[k]]+kk];
}
}
}
}
}
template<class T>
std::ostream& operator<<(std::ostream& str, const symmetriser<T>& sym)
{
for(unsigned int i=0; i<sym.size(); ++i) {
for(unsigned int j=0; j<sym[i].size(); ++j) {
str << sym[i][j] << " ";
}
str << " ";
str.setf(std::ios::right, std::ios::adjustfield);
str << std::setw(2) << sym.signature(i) << std::endl;
}
return str;
}
}
|