1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
#pragma once
#include "Storage.hh"
#include "Props.hh"
#include "properties/Indices.hh"
namespace cadabra {
/// \ingroup compare
///
/// Basic building block subtree comparison function for tensors
/// without dummy indices, which determines whether two tensor
/// subtrees are equal up to the names of indices. This uses NO
/// property information whatsoever; when indices are compared,
/// they are simply compared based on their name, not on the
/// index set they may belong to. In most cases, this is NOT what
/// you want.
///
/// In MOST cases, the use of Ex_comparator below is recommended
/// instead, as it can do much more complicated matching and will
/// also keep track of the relation between symbols in the pattern
/// and symbols in the object to be matched.
///
/// Examples:
///
/// A_m equals A_n up to index names
/// \diff{A*B_g*\diff{C}_k}_m equals \diff{A*B_h*\diff{C}_r}_s up to index names
///
/// return | meaning
/// -------|-----------------------------------------------
/// 0 | structure equal, and all indices the same name
/// 1 | structure equal, index names of one < two
/// -1 | structure equal, index names of one > two
/// 2 | structure different, one < two
/// -2 | structure different, one > two
///
/// @param one object
/// @param two pattern
/// @param mod_prel see below
/// @param checksets ignored FIXME: remove
/// @param compare_multiplier whether to match the multiplier field too.
/// @param literal_wildcards whether to treat wildcard names as ordinary names.
///
/// The mod_prel variable determines whether parent relations are taken into
/// account when comparing:
/// FIXME: now that subtree_compare does not use properties anymore, a lot can be simplified.
///
/// -3: require that parent relations match, unless indexpos=free.
/// -2: require that parent relations match (even when indexpos = free)
/// -1: do not require that parent relations match
/// >=0: do not require parent relations to match up to and including this level
///
/// Similar logic holds for the compare_multiplier parameter.
int subtree_compare(const Properties*,
Ex::iterator one, Ex::iterator two,
int mod_prel=-2, bool checksets=true, int compare_multiplier=-2,
bool literal_wildcards=false);
/// Various comparison functions, some exact, some with pattern logic.
bool tree_less(const Properties*,
const Ex& one, const Ex& two,
int mod_prel=-2, bool checksets=true, int compare_multiplier=-2);
bool tree_equal(const Properties*,
const Ex& one, const Ex& two,
int mod_prel=-2, bool checksets=true, int compare_multiplier=-2);
bool tree_exact_less(const Properties*,
const Ex& one, const Ex& two,
int mod_prel=-2, bool checksets=true, int compare_multiplier=-2,
bool literal_wildcards=false);
bool tree_exact_equal(const Properties*,
const Ex& one, const Ex& two,
int mod_prel=-2, bool checksets=true, int compare_multiplier=-2,
bool literal_wildcards=false);
bool subtree_less(const Properties*,
Ex::iterator one, Ex::iterator two,
int mod_prel=-2, bool checksets=true, int compare_multiplier=-2);
bool subtree_equal(const Properties*,
Ex::iterator one, Ex::iterator two,
int mod_prel=-2, bool checksets=true, int compare_multiplier=-2);
bool subtree_exact_less(const Properties*,
Ex::iterator one, Ex::iterator two,
int mod_prel=-2, bool checksets=true, int compare_multiplier=-2,
bool literal_wildcards=false);
bool subtree_exact_equal(const Properties*,
Ex::iterator one, Ex::iterator two,
int mod_prel=-2, bool checksets=true, int compare_multiplier=-2,
bool literal_wildcards=false);
/// Compare two trees by pattern logic, i.e. modulo index names.
//
class tree_less_obj {
public:
tree_less_obj(const Properties*);
bool operator()(const Ex& first, const Ex& second) const;
private:
const Properties* properties;
};
class tree_less_modprel_obj {
public:
tree_less_modprel_obj(const Properties*);
bool operator()(const Ex& first, const Ex& second) const;
private:
const Properties* properties;
};
class tree_equal_obj {
public:
tree_equal_obj(const Properties*);
bool operator()(const Ex& first, const Ex& second) const;
private:
const Properties* properties;
};
/// Compare two trees exactly, i.e. including exact index names.
//
class tree_exact_less_obj {
public:
tree_exact_less_obj(const Properties*);
bool operator()(const Ex& first, const Ex& second) const;
private:
const Properties* properties;
};
class tree_exact_less_mod_prel_obj {
public:
tree_exact_less_mod_prel_obj(const Properties*);
bool operator()(const Ex& first, const Ex& second) const;
private:
const Properties* properties;
};
class tree_exact_equal_obj {
public:
tree_exact_equal_obj(const Properties*);
bool operator()(const Ex& first, const Ex& second) const;
private:
const Properties* properties;
};
class tree_exact_equal_mod_prel_obj {
public:
tree_exact_equal_mod_prel_obj(const Properties*);
bool operator()(const Ex& first, const Ex& second) const;
private:
const Properties* properties;
};
/// Compare for indexmap_t. The only comparator object that does not use
/// properties info to lookup properties. This one compares exactly (it cannot
/// do any matching which requires knowledge about index sets because it does
/// not know about properties). It requires parent relations to match including
/// at top level. It requires multipliers to match including at top level.
/// Names with '?' or '??' suffixes are matched literally, not as patterns.
class tree_exact_less_for_indexmap_obj {
public:
bool operator()(const Ex& first, const Ex& second) const;
};
/// Compare two trees exactly, treat wildcard names as ordinary names.
//
class tree_exact_less_no_wildcards_obj {
public:
tree_exact_less_no_wildcards_obj(); // disables property handling
tree_exact_less_no_wildcards_obj(const Properties*);
bool operator()(const Ex& first, const Ex& second) const;
private:
const Properties* properties;
};
class tree_exact_less_no_wildcards_mod_prel_obj {
public:
tree_exact_less_no_wildcards_mod_prel_obj(const Properties*);
bool operator()(const Ex& first, const Ex& second) const;
private:
const Properties* properties;
};
/// \ingroup compare
///
/// A generic tree comparison class which will take into account index
/// contractions and will also keep track of a replacement list for
/// all types of cadabra wildcards. The entry point is typically
/// 'equal_subtree' or 'match_subproduct'.
class Ex_comparator {
public:
Ex_comparator(const Properties&);
enum class match_t {
node_match=0, // a single node matches
subtree_match=1, // identical match, including index names
match_index_less=2, // structure match, indices in same set, but different names
match_index_greater=3,
no_match_indexpos_less=4, // mismatch but only for index positions
no_match_indexpos_greater=5,
no_match_less=6, // more serious mismatch
no_match_greater=7
};
enum class useprops_t {
always=0, // always use property info
not_at_top, // don't use property info at top level of the expression
never=2 // never use property info
};
/// Reset the object for a new match.
void clear();
/// Determine whether Coordinates in the pattern (first argument
/// to functions below) can match against Indices in the object
/// (second argument). That is to say, whether the pattern
/// `\partial_{t}{A}` matches against the expression
/// `\partial_{\mu}{A}` when `\mu` can take the value `t`. This is
/// used in 'evaluate', but should generically be turned off for
/// 'substitute'.
void set_value_matches_index(bool);
/// Match two subtrees taking into account symbol
/// properties. 'i1' can be a pattern.
/// Returns subtree_match or one of the no_match
/// results. You need to fill lhs_contains_dummies before
/// calling!
/// If use_props is false, it will not try to fetch any property
/// information at the TOP level of the comparison. Properties
/// will always be used at levels.
match_t equal_subtree(Ex::iterator i1, Ex::iterator i2,
useprops_t use_props=useprops_t::always, bool ignore_parent_rel=false);
/// Match two subtrees, new-style equal_subtree that handles conditions; this is
/// what substitute uses.
match_t match_subtree(const Ex&, Ex::iterator i1, Ex::iterator i2, Ex::iterator conditions);
/// Find a sub-product in a product. The 'lhs' iterator points to the product which
/// we want to find, the 'tofind' iterator to the current factor which we are looking
/// for. The product in which to search is pointed to by 'st'.
/// Once 'tofind' is found, this routine calls itself to find the next factor in
/// 'lhs'. If the next factor cannot be found, we backtrack and try to find the
/// previous factor again (it may have appeared multiple times).
match_t match_subproduct(const Ex&,
Ex::sibling_iterator lhs, Ex::sibling_iterator tofind,
Ex::sibling_iterator st, Ex::iterator conditions);
/// Find a sub-sum in a sum. The 'lhs' iterator points to the sum which
/// we want to find, the 'tofind' iterator to the current term which we are looking
/// for. The sum in which to search is pointed to by 'st'.
/// Once 'tofind' is found, this routine calls itself to find the next term in
/// 'lhs'. Since Cadabra assumes all terms in a sum commute, we do not
/// need the backtracking logic of subproduct.
match_t match_subsum(const Ex&,
Ex::sibling_iterator lhs, Ex::sibling_iterator tofind,
Ex::sibling_iterator st, Ex::iterator conditions);
/// Check whether the a match found by calling equal_subtree or match_subproduct
/// satisfies the conditions as stated.
/// FIXME: document possible conditions.
bool satisfies_conditions(Ex::iterator conditions, std::string& error);
/// Map for the replacement of nodes (indices, patterns).
typedef std::map<Ex, Ex, tree_exact_less_no_wildcards_obj> replacement_map_t;
replacement_map_t replacement_map;
/// Map for the replacement of entire subtrees (object patterns).
typedef std::map<nset_t::iterator, Ex::iterator, nset_it_less> subtree_replacement_map_t;
subtree_replacement_map_t subtree_replacement_map;
/// Map for matching of index names to index values. Note: this is in the opposite order
/// from replacement_map!
replacement_map_t index_value_map;
/// Information to keep track of where individual factors/terms
/// in a sub-product/sub-sum were found, and (for sub-products)
/// whether moving them into the searched-for order leads to
/// sign flips.
std::vector<Ex::sibling_iterator> factor_locations;
std::vector<int> factor_moving_signs;
multiplier_t term_ratio;
/// Flag to indicate whether additional care must be taken to handle dummies in the
/// lhs of the pattern.
/// FIXME: would be better if this were automatic.
bool lhs_contains_dummies;
/// Determine whether two objects should be swapped according to
/// the available SortOrder properties.
bool should_swap(Ex::iterator obj, match_t subtree_comparison) ;
/// Determine whether obj and obj+1 be exchanged? If yes, return
/// the sign, if no return zero. This is the general entry point
/// for two arbitrary nodes (which may be a product or sum).
///
/// The last flag ('ignore_implicit_indices') is used to disable
/// all checks dealing with implicit indices (this is useful for
/// algorithms which re-order objects with implicit indices,
/// which would otherwise always receive a 0 from this
/// function).
int can_swap(Ex::iterator one, Ex::iterator two, match_t subtree_comparison,
bool ignore_implicit_indices=false);
/// Wrapper for can_swap which is meant for objects that have implicit
/// indices. This checks whether a single component of A commutes or
/// anticommutes with a single component of B, saying nothing about
/// whether A and B commute under matrix multiplication.
int can_swap_components(Ex::iterator one, Ex::iterator two,
match_t subtree_comparison);
/// Determine whether object 'one' and 'two' can be moved next
/// to each other by moving either one or the other: if fix_one==true
/// the first node is kept fixed, otherwise the second node is kept fixed.
int can_move_adjacent(Ex::iterator prod, Ex::sibling_iterator one,
Ex::sibling_iterator two, bool fix_one=false) ;
/// Determine whether object 'one' can be moved to be the first
/// factor in the given product.
int can_move_to_front(Ex&, Ex::iterator prod, Ex::sibling_iterator one);
/// Alternative to the above, which handles more complicated versions where we
/// need to keep track of previously moved factors (used by algorithms/substitute.cc).
int can_move_adjacent(Ex::iterator prod, const std::vector<Ex::sibling_iterator>& factors, Ex::sibling_iterator to_move);
protected:
const Properties& properties;
bool value_matches_index;
/// Internal entry point. This comparison function tries to match
/// a single node in the tree, except when the node is an
/// index. Indices are considered to be leaf-nodes, and for these
/// a full subtree match will be attempted (using subtree_compare).
match_t compare(const Ex::iterator&, const Ex::iterator&,
bool nobrackets=false,
useprops_t use_props=useprops_t::always,
bool ignore_parent_rel=false);
// Internal functions used by can_swap.
int can_swap_prod_obj(Ex::iterator prod, Ex::iterator obj, bool) ;
int can_swap_prod_prod(Ex::iterator prod1, Ex::iterator prod2, bool) ;
int can_swap_sum_obj(Ex::iterator sum, Ex::iterator obj, bool) ;
int can_swap_prod_sum(Ex::iterator prod, Ex::iterator sum, bool) ;
int can_swap_sum_sum(Ex::iterator sum1, Ex::iterator sum2, bool) ;
int can_swap_ilist_ilist(Ex::iterator obj1, Ex::iterator obj2);
bool can_swap_different_indexsets(Ex::iterator obj1, Ex::iterator obj2);
std::string tab() const;
match_t report(match_t r) const;
/// Match the `name` elements of a node, but take into account that
/// one of them can be an autodeclare name `XXX#`.
bool name_match_with_autodeclare(Ex::sibling_iterator one, Ex::sibling_iterator two) const;
static int offset;
};
/// \ingroup core
///
/// Basic comparison operator for tree iterators, so we can use them as keys in maps.
class Ex_is_equivalent {
public:
Ex_is_equivalent(const Properties&);
bool operator()(const Ex&, const Ex&);
private:
const Properties& properties;
};
class Ex_is_less {
public:
Ex_is_less(const Properties&, int mod_prel);
bool operator()(const Ex&, const Ex&);
private:
const Properties& properties;
int mod_prel;
};
}
bool operator<(const cadabra::Ex::iterator&, const cadabra::Ex::iterator&);
bool operator<(const cadabra::Ex&, const cadabra::Ex&);
std::ostream& operator<<(std::ostream&, cadabra::Ex_comparator::useprops_t up);
|