1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
/*
Cadabra: a field-theory motivated computer algebra system.
Copyright (C) 2001-2011 Kasper Peeters <kasper.peeters@aei.mpg.de>
This program is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <map>
#include "Exchange.hh"
#include "Compare.hh"
#include "Algorithm.hh"
#include "properties/DiracBar.hh"
using namespace cadabra;
// Find groups of identical tensors.
//
int exchange::collect_identical_tensors(const Properties& properties, Ex& tr, Ex::iterator it,
std::vector<identical_tensors_t>& idts)
{
assert(*it->name=="\\prod");
int total_number_of_indices=0; // refers to number of indices on gamma matrices
Ex::sibling_iterator sib=it.begin();
while(sib!=it.end()) {
unsigned int i=0;
if(Algorithm::number_of_indices(properties, sib)==0) {
++sib;
continue;
}
if(properties.get<GammaMatrix>(sib)) {
total_number_of_indices+=Algorithm::number_of_indices(properties, sib);
++sib;
continue;
}
// In case of spinors, the name may be hidden inside a Dirac bar.
Ex::sibling_iterator truetensor=sib;
const DiracBar *db=properties.get<DiracBar>(truetensor);
if(db)
truetensor=tr.begin(truetensor);
Ex_comparator comp(properties);
// Compare the current tensor with all other tensors encountered so far.
for(; i<idts.size(); ++i) {
Ex::sibling_iterator truetensor2=idts[i].tensors[0];
const DiracBar *db2=properties.get<DiracBar>(truetensor2);
if(db2)
truetensor2=tr.begin(truetensor2);
comp.clear();
auto match = comp.equal_subtree(truetensor2, truetensor);
if(match==Ex_comparator::match_t::subtree_match ||
match==Ex_comparator::match_t::match_index_less ||
match==Ex_comparator::match_t::match_index_greater) {
// If this is a spinor, check that it's connected to the one already stored
// by a Gamma matrix, or that it is connected directly.
if(idts[i].spino) {
Ex::sibling_iterator tmpit=idts[i].tensors[0];
const GammaMatrix *gmnxt=0;
const Spinor *spnxt=0;
// skip objects without spinor line
do {
++tmpit;
gmnxt=properties.get<GammaMatrix>(tmpit);
spnxt=properties.get<Spinor>(tmpit);
}
while(gmnxt==0 && spnxt==0);
if(tmpit==sib) {
// txtout << "using fermi exchange" << std::endl;
idts[i].extra_sign++;
break;
}
if(gmnxt) {
// txtout << "gamma next " << std::endl;
int numind=Algorithm::number_of_indices(properties, tmpit);
// skip objects without spinor line
do {
++tmpit;
gmnxt=properties.get<GammaMatrix>(tmpit);
spnxt=properties.get<Spinor>(tmpit);
}
while(gmnxt==0 && spnxt==0);
if(tmpit==sib) { // yes, it's a proper Majorana spinor pair.
// txtout << "using fermi exchange with gamma " << numind << std::endl;
if( ((numind*(numind+1))/2)%2 == 0 )
idts[i].extra_sign++;
break;
}
}
}
else break;
}
}
if(i==idts.size()) {
identical_tensors_t ngr;
ngr.comm=properties.get<SelfCommutingBehaviour>(sib, true);
// if(ngr.comm)
// std::cerr << "selfcomm " << ngr.comm->sign() << " for " << sib << std::endl;
ngr.spino=properties.get<Spinor>(sib);
ngr.tab=properties.get<TableauBase>(sib);
ngr.traceless=properties.get<Traceless>(sib);
ngr.gammatraceless=properties.get<GammaTraceless>(sib);
ngr.extra_sign=0;
ngr.number_of_indices=Algorithm::number_of_indices(properties, truetensor);
ngr.tensors.push_back(sib);
ngr.seq_numbers_of_first_indices.push_back(total_number_of_indices);
total_number_of_indices+=ngr.number_of_indices;
if(ngr.spino==0 || ngr.spino->majorana==true)
idts.push_back(ngr);
}
else {
idts[i].tensors.push_back(sib);
idts[i].seq_numbers_of_first_indices.push_back(total_number_of_indices);
total_number_of_indices+=idts[i].number_of_indices;
}
++sib;
}
return total_number_of_indices;
}
bool exchange::get_node_gs(const Properties& properties, Ex& tr, Ex::iterator it, std::vector<std::vector<int> >& gs)
{
std::vector<identical_tensors_t> idts;
int total_number_of_indices=collect_identical_tensors(properties, tr, it, idts);
if(idts.size()==0) return true; // no indices, so nothing to permute
// Make a strong generating set for the permutation of identical tensors.
for(unsigned int i=0; i<idts.size(); ++i) {
unsigned int num=idts[i].tensors.size();
if(idts[i].comm)
if(idts[i].comm->sign()==0) continue;
if(num>1) {
std::vector<int> gsel(total_number_of_indices+2);
for(unsigned int sobj=0; sobj<num-1; ++sobj) {
for(int kk=0; kk<total_number_of_indices+2; ++kk)
gsel[kk]=kk+1;
// permutation of sobj & obj for all sobj and obj > sobj.
for(unsigned int obj=sobj; obj<num-1; ++obj) {
for(unsigned int kk=0; kk<idts[i].number_of_indices; ++kk)
std::swap(gsel[idts[i].seq_numbers_of_first_indices[obj]+kk],
gsel[idts[i].seq_numbers_of_first_indices[obj+1]+kk]);
if(idts[i].spino) {
assert(num==2); // FIXME: cannot yet do more than two fermions
if(idts[i].extra_sign%2==1) {
std::swap(gsel[total_number_of_indices], gsel[total_number_of_indices+1]);
}
}
if(idts[i].comm) {
if(idts[i].comm->sign()==-1)
std::swap(gsel[total_number_of_indices], gsel[total_number_of_indices+1]);
}
if(idts[i].spino && idts[i].number_of_indices==0) {
if(gsel[total_number_of_indices+1]==total_number_of_indices+1)
return false;
}
else gs.push_back(gsel);
}
}
}
}
// for(unsigned int i=0; i<idts.size(); ++i) {
// int num=idts[i].tensors.size();
// if(num>1) {
// for(int t1=0; t1<num-1; ++t1) {
// for(int t2=t1+1; t2<num; ++t2) {
// std::vector<int> gsel(total_number_of_indices+2);
// for(int kk=0; kk<total_number_of_indices+2; ++kk)
// gsel[kk]=kk+1;
//
// if(idts[i].spino) {
// assert(num==2); // FIXME: cannot yet do more than two fermions
// if(idts[i].extra_sign%2==1) {
// // txtout << "extra sign" << std::endl;
// std::swap(gsel[total_number_of_indices], gsel[total_number_of_indices+1]);
// }
// }
// for(unsigned int kk=0; kk<idts[i].number_of_indices; ++kk)
// std::swap(gsel[idts[i].seq_numbers_of_first_indices[t1]+kk],
// gsel[idts[i].seq_numbers_of_first_indices[t2]+kk]);
// // for(int kk=0; kk<total_number_of_indices+2; ++kk) {
// // txtout << gsel[kk] << " ";
// // }
// // txtout << std::endl;
// // txtout << "adding gs element" << std::endl;
//
// if(idts[i].comm) {
// if(idts[i].comm->sign()==-1) {
// // txtout << "anticommuting" << std::endl;
// std::swap(gsel[total_number_of_indices], gsel[total_number_of_indices+1]);
// }
// else if(idts[i].comm->sign()==0)
// return false;
// }
//
// if(idts[i].spino && idts[i].number_of_indices==0) {
// if(gsel[total_number_of_indices+1]==total_number_of_indices+1)
// return false;
// }
// else gs.push_back(gsel);
// }
// }
// }
// }
return true;
}
bool operator<(const exchange::tensor_type_t& one, const exchange::tensor_type_t& two)
{
if(*one.name < *two.name) return true;
if(one.name == two.name)
if(one.number_of_indices < two.number_of_indices) return true;
return false;
}
|