1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
|
#include "IndexClassifier.hh"
#include "IndexIterator.hh"
#include "Exceptions.hh"
#include "Kernel.hh"
#include "properties/Symbol.hh"
#include "properties/Coordinate.hh"
#include "properties/IndexInherit.hh"
#include <sstream>
// #define DEBUG 1
using namespace cadabra;
IndexClassifier::IndexClassifier(const Kernel& k)
: kernel(k)
{
}
// For each iterator in the original map, find the sequential position of the index.
// That is, the index 'd' has position '3' in A_{a b} C_{c} D_{d}.
// WARNING: expensive operation.
//
void IndexClassifier::fill_index_position_map(Ex::iterator prodnode, const index_map_t& im, index_position_map_t& ipm) const
{
ipm.clear();
index_map_t::const_iterator imit=im.begin();
while(imit!=im.end()) {
int current_pos=0;
bool found=false;
index_iterator indexit=index_iterator::begin(kernel.properties, prodnode);
while(indexit!=index_iterator::end(kernel.properties, prodnode)) {
if(imit->second==(Ex::iterator)(indexit)) {
ipm.insert(index_position_map_t::value_type(imit->second, current_pos));
found=true;
break;
}
++current_pos;
++indexit;
}
if(!found)
throw ConsistencyException("Internal error in fill_index_position_map; cannot find index "
+ *(imit->first.begin()->name)+".");
++imit;
}
}
void IndexClassifier::fill_map(index_map_t& mp, Ex::sibling_iterator st, Ex::sibling_iterator nd) const
{
while(st!=nd) {
mp.insert(index_map_t::value_type(Ex(st), Ex::iterator(st)));
++st;
}
}
void IndexClassifier::determine_intersection(index_map_t& one, index_map_t& two, index_map_t& target, bool move_out) const
{
index_map_t::iterator it1=one.begin();
while(it1!=one.end()) {
const Coordinate *cdn=kernel.properties.get<Coordinate>(it1->second, true);
const Symbol *smb=Symbol::get(kernel.properties, it1->second, true);
if(it1->second->is_integer()==false && !cdn && !smb && !it1->second->is_name_wildcard() && !it1->second->is_object_wildcard() &&
!(*it1->second->name=="\\sum")) {
bool move_this_one=false;
index_map_t::iterator it2=two.begin();
while(it2!=two.end()) {
if(tree_exact_equal(&kernel.properties, (*it1).first,(*it2).first,1,true,-2,true)) {
// const Indices *ind=kernel.properties.get<Indices>(it1->second);
// if(ind && ind->position_type==Indices::fixed && it1->second->fl.parent_rel==it2->second->fl.parent_rel) {
// std::cerr << tr << std::endl;
// throw ConsistencyException("Fixed index pair with two upper or two lower indices "+ *it1->second->name + " found.");
// }
target.insert((*it2));
if(move_out) {
index_map_t::iterator nxt=it2;
++nxt;
two.erase(it2);
it2=nxt;
move_this_one=true;
}
else ++it2;
}
else ++it2;
}
Ex the_key=(*it1).first;
if(move_this_one && move_out) {
index_map_t::iterator nxt=it1;
++nxt;
target.insert(*it1);
one.erase(it1);
it1=nxt;
}
else ++it1;
// skip all indices in two with the same name
while(it1!=one.end() && tree_exact_equal(&kernel.properties, (*it1).first,the_key,1,true,-2,true)) {
if(move_this_one && move_out) {
index_map_t::iterator nxt=it1;
++nxt;
target.insert(*it1);
one.erase(it1);
it1=nxt;
}
else ++it1;
}
}
else ++it1;
}
}
IndexClassifier::index_map_t::iterator IndexClassifier::find_modulo_parent_rel(Ex::iterator it, index_map_t& imap) const
{
auto fnd=imap.find(it);
if(fnd==imap.end()) {
it->flip_parent_rel();
fnd=imap.find(it);
it->flip_parent_rel();
return fnd;
}
return fnd;
}
// Directly add an index to the free/dummy sets, as appropriate (only add if this really is an
// index!)
void IndexClassifier::classify_add_index(Ex::iterator it, index_map_t& ind_free, index_map_t& ind_dummy) const
{
if((it->fl.parent_rel==str_node::p_sub || it->fl.parent_rel==str_node::p_super) &&
it->fl.bracket==str_node::b_none /* && it->is_integer()==false */) {
const Coordinate *cdn=kernel.properties.get<Coordinate>(it, true);
const Symbol *smb=Symbol::get(kernel.properties, it, true);
if(it->is_integer() || cdn || smb)
ind_free.insert(index_map_t::value_type(Ex(it), it));
else {
index_map_t::iterator fnd=find_modulo_parent_rel(it, ind_free);
if(fnd!=ind_free.end()) {
// std::cerr << "found in free indices" << std::endl;
// check consistency: one up and one down if index position is fixed.
const Indices *ind=kernel.properties.get<Indices>(it);
if(ind && ind->position_type==Indices::fixed && it->fl.parent_rel==fnd->second->fl.parent_rel) {
throw ConsistencyException("Fixed index pair with two upper or two lower indices found.");
}
ind_dummy.insert(*fnd);
ind_dummy.insert(index_map_t::value_type(Ex(it), it));
ind_free.erase(fnd);
}
else {
// std::cerr << "not yet found; after insertion" << std::endl;
if(ind_dummy.count(it)>0) {
throw ConsistencyException("Triple index occurred.");
}
ind_free.insert(index_map_t::value_type(Ex(it), it));
// for(auto& n: ind_free)
// std::cerr << n.first << std::endl;
}
}
}
}
void IndexClassifier::classify_indices_up(Ex::iterator it, index_map_t& ind_free, index_map_t& ind_dummy) const
{
#ifdef DEBUG
std::cerr << "classify_indices_up at " << it << std::endl;
#endif
loopie:
if(Ex::is_head(it)) return;
Ex::iterator par=Ex::parent(it);
// if(Ex::is_valid(par)==false || par==tr.end()) { // reached the top
// return;
// }
const IndexInherit *inh=kernel.properties.get<IndexInherit>(par);
if(*par->name=="\\sum" || *par->name=="\\equals") {
// sums or equal signs are no problem since the other terms do not end up in our
// factor; therefore, just go up.
it=par;
goto loopie;
}
else if(*par->name=="\\fermibilinear" || inh) {
// For each _other_ child in this product, do a top-down classify for all non-sub/super
// children; add the indices thus found to the maps since they will end up in our factor.
Ex::sibling_iterator sit=par.begin();
while(sit!=par.end()) {
#ifdef DEBUG
std::cerr << "checking " << sit << std::endl;
#endif
if(sit!=Ex::sibling_iterator(it)) {
if(sit->is_index()==false) {
#ifdef DEBUG
std::cerr << "classifying at " << sit << std::endl;
#endif
index_map_t factor_free, factor_dummy;
classify_indices(sit, factor_free, factor_dummy);
// Test for absence of triple or quadruple indices
index_map_t must_be_empty;
determine_intersection(factor_free, ind_dummy, must_be_empty);
if(must_be_empty.size()>0)
throw ConsistencyException("Triple index occurred.");
// Test for absence of double index pairs
must_be_empty.clear();
determine_intersection(factor_dummy, ind_dummy, must_be_empty);
if(must_be_empty.size()>0)
throw ConsistencyException("Double index pair occurred.");
ind_dummy.insert(factor_dummy.begin(), factor_dummy.end());
index_map_t new_dummy;
determine_intersection(factor_free, ind_free, new_dummy, true);
ind_free.insert(factor_free.begin(), factor_free.end());
ind_dummy.insert(new_dummy.begin(), new_dummy.end());
}
else {
// ind_free.insert(free_so_far.begin(), free_so_far.end());
// free_so_far.clear();
classify_add_index(sit, ind_free, ind_dummy);
}
}
++sit;
}
it=par;
goto loopie;
}
else if((*par->name).size()>0 && (*par->name)[0]=='@') { // command nodes swallow everything
return;
}
else if(*par->name=="\\tie") { // tie lists do not care about indices
ind_free.clear();
ind_dummy.clear();
it=par;
goto loopie;
}
else if(*par->name=="\\arrow") { // rules can have different indices on lhs and rhs
// ind_free.clear();
// ind_dummy.clear();
it=par;
goto loopie;
}
// else if(*par->name=="\\indexbracket") { // it's really just a bracket, so go up
// Ex::sibling_iterator sit=tr.begin(par);
// ++sit;
// while(sit!=tr.end(par)) {
// ++sit;
// }
// it=par;
// goto loopie;
// }
else if(*par->name=="\\comma") { // comma lists can contain anything NO: [a_{mu}, b_{nu}]
// reaching a comma node is like reaching the top of an expression.
return;
}
else if(!inh) {
return;
}
// FIXME: do something with these warnings!!
// txtout << "Index classification for this expression failed because of "
// << *par->name << " node, disabling index checking." << std::endl;
// assert(1==0);
ind_free.clear();
ind_dummy.clear();
}
void IndexClassifier::dumpmap(std::ostream& str, const index_map_t& mp) const
{
index_map_t::const_iterator dpr=mp.begin();
while(dpr!=mp.end()) {
str << *(dpr->first.begin()->name) << " ";
++dpr;
}
str << std::endl;
}
void IndexClassifier::classify_indices(Ex::iterator it, index_map_t& ind_free, index_map_t& ind_dummy) const
{
const IndexInherit *inh=kernel.properties.get<IndexInherit>(it);
if(*it->name=="\\sum" || *it->name=="\\equals") {
index_map_t first_free;
Ex::sibling_iterator sit=it.begin();
bool is_first_term=true;
// Determine whether all indices in 'one' are also present in 'two' (but not the
// other way around). Takes care of matching non-equal parent_rel if the index
// is free. Indices in 'one' which are integers, symbols, coordinates or patterns do not
// need to match indices in 'two'.
auto free_index_set_contains = [&](const index_map_t& one, const index_map_t& two) {
index_map_t::const_iterator i1=one.begin();
while(i1!=one.end()) {
const Coordinate *cdn=kernel.properties.get<Coordinate>(i1->second, true);
const Symbol *smb=kernel.properties.get<Symbol>(i1->second, true);
// Integer, coordinate or symbol indices, or pattern objects, or '\sum' nodes, are always ok.
if(i1->second->is_integer()==false && !cdn && !smb && !i1->second->is_name_wildcard() && !i1->second->is_object_wildcard()
&& !(*i1->second->name=="\\sum")) {
// Check whether there is a corresponding free index in the current term.
if(two.count((*i1).first)==0) {
// std::cerr << "did not find Symbol for " << i1->second << std::endl;
// Not found. However, if this index is free, it is
// allowed to appear with opposite parent rel. Check
// that too.
const Indices *idc = kernel.properties.get<Indices>(i1->second, true);
bool trouble=true;
// if(idc)
// std::cerr << "Have indices " << idc->position_type << std::endl;
if(idc && idc->position_type==Indices::position_t::free) {
Ex cpy((*i1).first);
cpy.begin()->flip_parent_rel();
if(two.count(cpy)!=0) {
trouble=false;
// std::cerr << "Narrow escape" << std::endl;
}
}
if(trouble) return false;
}
}
++i1;
}
return true;
};
// Look at the first term to determine the free index
// content. Then consider all other terms in turn, and check
// that their free index content matches.
while(sit!=it.end()) {
if(*sit->multiplier!=0) { // A zero term is always ok.
// Classify the indices of this term in the sum.
index_map_t term_free, term_dummy;
classify_indices(sit, term_free, term_dummy);
if(!is_first_term) {
bool ok=true;
ok = ok && free_index_set_contains(first_free, term_free);
ok = ok && free_index_set_contains(term_free, first_free);
if(!ok) {
if(*it->name=="\\sum") {
#ifdef DEBUG
std::cerr << "--- first:" << std::endl;
for(auto& ii: first_free)
std::cerr << ii.first << std::endl;
std::cerr << "--- term:" << std::endl;
for(auto& ii: term_free)
std::cerr << ii.first << std::endl;
#endif
throw ConsistencyException("Free indices in different terms in a sum do not match.");
}
else
throw ConsistencyException("Free indices on lhs and rhs do not match.");
}
}
else {
// This is the first term; remember the free indices as we need
// to check that all other terms have the same indices free.
first_free=term_free;
is_first_term=false;
}
ind_dummy.insert(term_dummy.begin(), term_dummy.end());
ind_free.insert(term_free.begin(), term_free.end());
}
++sit; // next term in sum or \equals node
}
}
else if(inh) {
// std::cerr << "classify inherit at " << it << std::endl;
index_map_t free_so_far;
Ex::sibling_iterator sit=it.begin();
while(sit!=it.end()) {
// std::cerr << "testing" << std::endl;
if(sit->is_index()==false) {
index_map_t factor_free, factor_dummy;
classify_indices(sit, factor_free, factor_dummy);
// Test for absence of triple or quadruple indices
index_map_t must_be_empty;
determine_intersection(factor_free, ind_dummy, must_be_empty);
if(must_be_empty.size()>0)
throw ConsistencyException("Triple index "
+ *(must_be_empty.begin()->second->name)
+ " inside a single factor found.");
// Test for absence of double index pairs
must_be_empty.clear();
determine_intersection(factor_dummy, ind_dummy, must_be_empty);
if(must_be_empty.size()>0)
throw ConsistencyException("Double index pair "
+ *(must_be_empty.begin()->second->name)
+ " inside a single factor found.");
ind_dummy.insert(factor_dummy.begin(), factor_dummy.end());
index_map_t new_dummy;
determine_intersection(factor_free, free_so_far, new_dummy, true);
free_so_far.insert(factor_free.begin(), factor_free.end());
ind_dummy.insert(new_dummy.begin(), new_dummy.end());
}
else {
classify_add_index(sit, free_so_far, ind_dummy);
}
++sit;
}
ind_free.insert(free_so_far.begin(), free_so_far.end());
}
// else if(tr.is_valid(tr.parent(it))==false) {
// classify_indices(it.begin(), ind_free, ind_dummy);
// }
else if(*it->name=="\\tie") {
ind_free.clear();
ind_dummy.clear();
}
else if(*it->name=="\\pow") {
// Power nodes can have dummies in all arguments, but no free indices. We allow for
// \pow{ A_{m} A^{m} }{2} type of things, in the understanding that any algorithm that
// does something with this (e.g. product_rule) will need to relabel once the expression
// gets down to A_{m} A^{m} itself. Note that the classifier will mark numerical indices
// and coordinate indices as free.
auto sib=it.begin();
while(sib!=it.end()) {
index_map_t ind_free_here, ind_dummy_here;
classify_indices(sib, ind_free_here, ind_dummy_here);
if(ind_free_here.size()>0) {
for(auto& di: ind_free_here) {
const Coordinate *cdn=kernel.properties.get<Coordinate>(di.second, true);
const Symbol *smb=kernel.properties.get<Symbol>(di.second, true);
if(! (cdn || smb || di.second->is_integer()) ) {
#ifdef DEBUG
std::cerr << di.first << std::endl;
#endif
throw ConsistencyException("Power with free indices not allowed.");
}
}
// ind_free_here.clear();
}
// FIXME: add test for overlap
ind_free.insert(ind_free_here.begin(), ind_free_here.end());
ind_dummy.insert(ind_dummy_here.begin(), ind_dummy_here.end());
++sib;
}
}
else if((*it->name).size()>0 && (*it->name)[0]=='@') {
// This is an active node that has not been replaced yet; since
// we do not know anything about what this will become, do not return
// any index information (clashes will be resolved when the active
// node gets replaced).
}
else {
// std::cerr << "classify ordinary at " << it << std::endl;
Ex::sibling_iterator sit=it.begin();
index_map_t item_free;
index_map_t item_dummy;
while(sit!=it.end()) {
if((sit->fl.parent_rel==str_node::p_sub || sit->fl.parent_rel==str_node::p_super) && sit->fl.bracket==str_node::b_none) {
if(*sit->name!="??") {
const Coordinate *cdn=kernel.properties.get<Coordinate>(sit, true);
const Symbol *smb=kernel.properties.get<Symbol>(sit, true);
// integer, coordinate or symbol indices always ok
if(sit->is_integer() || cdn || smb) {
// Note: even integers need to be stored as indices, because we expect e.g. canonicalise
// to re-order even numerical indices. They should just never be flagged as dummies.
item_free.insert(index_map_t::value_type(Ex(sit), Ex::iterator(sit)));
}
else {
index_map_t::iterator fnd=find_modulo_parent_rel(sit, item_free);
if(fnd!=item_free.end()) {
if(find_modulo_parent_rel(sit, item_dummy)!=item_dummy.end())
throw ConsistencyException("Triple index " + *sit->name + " inside a single factor found.");
item_dummy.insert(*fnd);
item_free.erase(fnd);
item_dummy.insert(index_map_t::value_type(Ex(sit), Ex::iterator(sit)));
}
else {
item_free.insert(index_map_t::value_type(Ex(sit), Ex::iterator(sit)));
}
}
}
}
// else {
// item_free.insert(index_map_t::value_type(sit->name, Ex::iterator(sit)));
// }
++sit;
}
ind_free.insert(item_free.begin(), item_free.end());
ind_dummy.insert(item_dummy.begin(), item_dummy.end());
}
// std::cerr << "ind_free: " << ind_free.size() << std::endl;
// std::cerr << "ind_dummy: " << ind_dummy.size() << std::endl;
}
Ex IndexClassifier::get_dummy(const list_property *dums,
const index_map_t * one,
const index_map_t * two,
const index_map_t * three,
const index_map_t * four,
const index_map_t * five) const
{
std::pair<Properties::pattern_map_t::const_iterator, Properties::pattern_map_t::const_iterator>
pr=kernel.properties.pats.equal_range(dums);
// std::cerr << "finding index not in: " << std::endl;
// if(one)
// for(auto& i: *one)
// std::cerr << i.first << std::endl;
// if(two)
// for(auto& i: *two)
// std::cerr << i.first << std::endl;
// if(three)
// for(auto& i: *three)
// std::cerr << i.first << std::endl;
// if(four)
// for(auto& i: *four)
// std::cerr << i.first << std::endl;
// if(five)
// for(auto& i: *five)
// std::cerr << i.first << std::endl;
while(pr.first!=pr.second) {
// std::cerr << "trying " << pr.first->second->obj << std::endl;
if(pr.first->second->obj.begin()->is_autodeclare_wildcard()) {
std::string base=*pr.first->second->obj.begin()->name_only();
int used=max_numbered_name(base, one, two, three, four, five);
std::ostringstream str;
str << base << used+1;
// txtout << "going to use " << str.str() << std::endl;
nset_t::iterator newnm=name_set.insert(str.str()).first;
Ex ret;
ret.set_head(str_node(newnm));
return ret;
}
else {
const Ex& inm=(*pr.first).second->obj;
// BUG: even if only _{a} is in the used map, we should not
// accept ^{a}. But since ...
if(index_in_set(inm, one)==false &&
index_in_set(inm, two)==false &&
index_in_set(inm, three)==false &&
index_in_set(inm, four)==false &&
index_in_set(inm, five)==false) {
// std::cerr << "ok to use " << inm << std::endl;
return inm;
}
}
++pr.first;
}
const Indices *dd=dynamic_cast<const Indices *>(dums);
assert(dd);
throw ConsistencyException("Ran out of dummy indices for type \""+dd->set_name+"\".");
}
Ex IndexClassifier::get_dummy(const list_property *dums, Ex::iterator it) const
{
index_map_t one, two, three, four, five;
classify_indices_up(it, one, two);
classify_indices(it, three, four);
return get_dummy(dums, &one, &two, &three, &four, 0);
}
// Find a dummy index of the type given in "nm", making sure that this index
// name does not class with the object in it1 nor it2.
Ex IndexClassifier::get_dummy(const list_property *dums, Ex::iterator it1, Ex::iterator it2) const
{
index_map_t one, two, three, four, five;
classify_indices_up(it1, one, two);
classify_indices_up(it2, one, two);
classify_indices(it1, three, four);
classify_indices(it2, three, four);
return get_dummy(dums, &one, &two, &three, &four, 0);
}
void IndexClassifier::print_classify_indices(std::ostream& str, Ex::iterator st) const
{
str << "for node " << Ex(st) << std::endl;
index_map_t ind_free, ind_dummy;
classify_indices(st, ind_free, ind_dummy);
index_map_t::iterator it=ind_free.begin();
index_map_t::iterator prev=ind_free.end();
str << "free indices: " << std::endl;
while(it!=ind_free.end()) {
if(prev==ind_free.end() || tree_exact_equal(&kernel.properties, (*it).first,(*prev).first,1,true,-2,true)==false)
str << *(*it).first.begin()->name << " (" << ind_free.count((*it).first) << ") ";
prev=it;
++it;
}
str << std::endl;
it=ind_dummy.begin();
prev=ind_dummy.end();
str << "dummy indices: ";
while(it!=ind_dummy.end()) {
if(prev==ind_dummy.end() || tree_exact_equal(&kernel.properties, (*it).first,(*prev).first,1,true,-2,true)==false)
str << *(*it).first.begin()->name << " (" << ind_dummy.count((*it).first) << ") ";
prev=it;
++it;
}
str << "---" << std::endl;
}
int IndexClassifier::max_numbered_name_one(const std::string& nm, const index_map_t * one) const
{
assert(one);
int themax=0;
index_map_t::const_iterator it=one->begin();
while(it!=one->end()) {
size_t pos=(*it->first.begin()->name).find_first_of("0123456789");
if(pos!=std::string::npos) {
// txtout << (*it->first).substr(0,pos) << std::endl;
if((*it->first.begin()->name).substr(0,pos) == nm) {
int thenum=atoi((*it->first.begin()->name).substr(pos).c_str());
// txtout << "num = " << thenum << std::endl;
themax=std::max(themax, thenum);
}
}
++it;
}
return themax;
}
int IndexClassifier::max_numbered_name(const std::string& nm,
const index_map_t * one,
const index_map_t * two,
const index_map_t * three,
const index_map_t * four,
const index_map_t * five) const
{
int themax=0;
if(one) {
themax=std::max(themax, max_numbered_name_one(nm, one));
if(two) {
themax=std::max(themax, max_numbered_name_one(nm, two));
if(three) {
themax=std::max(themax, max_numbered_name_one(nm, three));
if(four) {
themax=std::max(themax, max_numbered_name_one(nm, four));
if(five) {
themax=std::max(themax, max_numbered_name_one(nm, five));
}
}
}
}
}
return themax;
}
bool IndexClassifier::index_in_set(Ex ex, const index_map_t *im) const
{
if(im==0) return false;
if(im->count(ex)>0) return true;
if(ex.begin()->fl.parent_rel==str_node::p_super) {
ex.begin()->fl.parent_rel=str_node::p_sub;
int c=im->count(ex);
if(c>0) return true;
}
if(ex.begin()->fl.parent_rel==str_node::p_sub) {
ex.begin()->fl.parent_rel=str_node::p_super;
int c=im->count(ex);
if(c>0) return true;
}
return false;
}
|