1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
#include "IndexIterator.hh"
#include "properties/IndexInherit.hh"
using namespace cadabra;
index_iterator::index_iterator(const Properties& k)
: iterator_base(), properties(&k)
{
}
index_iterator index_iterator::create(const Properties& k, const iterator_base& other)
{
index_iterator ret(k);
ret.node=other.node;
ret.halt=other;
ret.walk=other;
ret.roof=other;
ret.halt.skip_children();
++ret.halt;
ret.operator++();
return ret;
}
index_iterator::index_iterator(const index_iterator& other)
: iterator_base(other.node), halt(other.halt), walk(other.walk), roof(other.roof), properties(other.properties)
{
}
bool index_iterator::operator!=(const index_iterator& other) const
{
if(other.node!=this->node) return true;
else return false;
}
bool index_iterator::operator==(const index_iterator& other) const
{
if(other.node==this->node) return true;
else return false;
}
// \bar{\prod{A}{B}} 's indices are undefined, as \bar inherits
// the Product property of \prod. So the worst-case scenario is
// of the type \bar{\hat{A_\mu}} in which the objects with Inherit
// property are strictly nested. However, we can also have
// things like \bar{\diff{\diff{A_\mu}_{\nu}}_{\rho}}, for which
// we have to collect indices at multiple levels.
/*
\bar{?}::Accent.
\bar{\diff{\diff{A_\mu}_{\nu}}_{\rho}};
@indexlist(%);
\diff{\diff{A_{\mu}}_{\nu}}_{\rho};
@indexlist(%);
\diff{\diff{A}_{\nu}}_{\rho};
@indexlist(%);
\bar{\psi_{m}} * \Gamma_{q n p} * \psi_{m} * H_{n p q};
@indexlist(%);
q*A_{d c b a};
@indexlist(%);
A_{d c b a}*q;
@indexlist(%);
\diff{\phi}_s A_\mu \diff{\phi}_t;
@indexlist(%);
\Gamma_{a b c};
@indexlist(%);
\diff{\sin(x_\mu)}_{\nu};
@indexlist(%);
\equals{A_{i}}{B_{i j} Z_{j}};
@indexlist(%);
*/
index_iterator& index_iterator::operator+=(unsigned int num)
{
while(num != 0) {
--num;
operator++();
}
return *this;
}
index_iterator& index_iterator::operator++()
{
assert(this->node!=0);
// Increment the iterator. As long as we are at an inherit
// node, keep incrementing. As long as the parent does not inherit,
// and as long as we are not at the top node,
// skip children. As long as we are not at an index, keep incrementing.
const IndexInherit *this_inh=0, *parent_inh=0;
while(walk!=halt) {
this_inh=properties->get<IndexInherit>(walk);
if(this_inh==0 && (walk!=roof && walk.node->parent!=0)) {
parent_inh=properties->get<IndexInherit>(walk.node->parent);
if(parent_inh==0)
walk.skip_children();
}
++walk;
if(walk!=halt)
if(walk->is_index())
break;
// if(this_inh==false && walk->is_index())
// break;
}
if(walk==halt) {
this->node=0;
return *this;
}
else {
this->node=walk.node;
}
return *this;
}
index_iterator index_iterator::begin(const Properties& properties, const iterator_base& it, int offset)
{
index_iterator ret=index_iterator::create(properties,it);
if(offset>0)
ret+=offset;
return ret;
}
index_iterator index_iterator::end(const Properties& properties, const iterator_base& it)
{
index_iterator tmp=create(properties, it);
tmp.node=0;
return tmp;
}
index_iterator& index_iterator::operator=(const index_iterator& other)
{
iterator_base::operator=(other);
halt=other.halt;
walk=other.walk;
roof=other.roof;
properties=other.properties;
return *this;
}
//size_t number_of_indices(const Properties& pr, Ex::iterator it)
// {
// unsigned int res=0;
// index_iterator indit=index_iterator::begin(pr, it);
// while(indit!=index_iterator::end(pr, it)) {
// ++res;
// ++indit;
// }
// return res;
// }
|