File: NTensor.cc

package info (click to toggle)
cadabra2 2.4.3.2-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 78,732 kB
  • sloc: ansic: 133,450; cpp: 92,064; python: 1,530; javascript: 203; sh: 184; xml: 182; objc: 53; makefile: 51
file content (265 lines) | stat: -rw-r--r-- 6,272 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#include "NTensor.hh"
#include <stdexcept>
#include "Stopwatch.hh"
#include <cassert>
#include <cmath>

using namespace cadabra;

NTensor::NTensor(const std::vector<size_t>& shape_, double val)
	: shape(shape_)
	{
	size_t len=1;
	for(auto dim: shape)
		len *= dim;

	values.resize(len);
	for(auto& v: values)
		v=val;
	}

NTensor::NTensor(const std::vector<double>& vals)
	: values(vals)
	{
	shape.push_back(values.size());
	}

NTensor::NTensor(double val)
	{
	values.push_back(val);
	shape.push_back(1);
	}

NTensor::NTensor(const NTensor& other)
	{
	shape=other.shape;
	values=other.values;
	}

NTensor NTensor::linspace(double from, double to, size_t steps)
	{
	NTensor res(std::vector<size_t>({steps}), 0.0);
	assert(steps>1);

	for(size_t i=0; i<steps; ++i) {
		res.values[i] = from + i*(to-from)/(steps-1);
		}
	return res;
	}

NTensor& NTensor::operator=(const NTensor& other)
	{
	shape=other.shape;
	values=other.values;
	return *this;
	}

double NTensor::at(const std::vector<size_t>& indices) const
	{
	if(indices.size()!=shape.size())
		throw std::range_error("NTensor::at: number of indices != shape length.");

	size_t idx = 0;
	size_t stride=1;

	for(size_t p=indices.size(); p-- != 0; ) {
		if(indices[p]>=shape[p])
			throw std::range_error("NTensor::at: index out of range.");
		idx += stride*indices[p];
		stride *= shape[p];
		}

	if(idx >= values.size())
		throw std::range_error("NTensor::at: indices out of range.");

	return values[idx];
	}

double& NTensor::at(const std::vector<size_t>& indices)
	{
	if(indices.size()!=shape.size())
		throw std::range_error("NTensor::at: number of indices != shape length.");

	size_t idx = 0;
	size_t stride=1;

	for(size_t p=indices.size(); p-- != 0; ) {
		if(indices[p]>=shape[p])
			throw std::range_error("NTensor::at: index out of range.");
		idx += stride*indices[p];
		stride *= shape[p];
		}

	if(idx >= values.size())
		throw std::range_error("NTensor::at: indices out of range.");

	return values[idx];
	}

std::ostream& operator<<(std::ostream &str, const NTensor &nt)
	{
	// For an {a,b} tensor, we display as a vector of size 'a', each
	// element of which is a vector of size 'b'. And so on.

	for(size_t p=0; p<nt.shape.size(); ++p)
		str << "[";

	for(size_t i=0; i<nt.values.size(); ++i) {
		str << nt.values[i];

		// Closing/re-opening.
		size_t mult=1;
		for(size_t p=nt.shape.size(); p-- != 0; ) {
			// 2,4,3 -> 2, 8, 24
			mult *= nt.shape[p];
			if((i+1)%mult == 0)
				str << "]";
			}

		if(i+1<nt.values.size()) {
			str << ", ";
			mult=1;
			for(size_t p=nt.shape.size(); p-- != 0; ) {
				mult *= nt.shape[p];
				if((i+1)%mult == 0)
					str << "[";
				}
			}
		}

	return str;
	}

NTensor& NTensor::apply(double (*fun)(double))
	{
	for(auto& v: values)
		v = fun(v);

	return *this;
	}

NTensor& NTensor::operator+=(const NTensor& other)
	{
	if(other.shape.size()==1 && other.shape[0]==1) {
		// Arbitrary size base to the power of a scalar.
		for(size_t i=0; i<values.size(); ++i)
			values[i] += other.values[0];
		}
	else {
		if(shape.size() != other.shape.size())
			throw std::range_error("NTensor::pow: shape lengths do not match.");
		
		for(size_t p=0; p<shape.size(); ++p)
			if(shape[p]!=other.shape[p])
				throw std::range_error("NTensor::operator+=: shapes do not match.");
		
		for(size_t i=0; i<values.size(); ++i)
			values[i] += other.values[i];
		}
	
	return *this;
	}

NTensor& NTensor::operator*=(const NTensor& other)
	{
	if(other.shape.size()==1 && other.shape[0]==1) {
		// Arbitrary size base to the power of a scalar.
		for(size_t i=0; i<values.size(); ++i)
			values[i] *= other.values[0];
		}
	else {
		if(shape.size() != other.shape.size())
			throw std::range_error("NTensor::pow: shape lengths do not match.");
		
		for(size_t p=0; p<shape.size(); ++p)
			if(shape[p]!=other.shape[p])
				throw std::range_error("NTensor::operator+=: shapes do not match.");
		
		for(size_t i=0; i<values.size(); ++i)
			values[i] *= other.values[i];
		}

	return *this;
	}

NTensor& NTensor::pow(const NTensor& other)
	{
	if(other.shape.size()==1 && other.shape[0]==1) {
		// Arbitrary size base to the power of a scalar.
		for(size_t i=0; i<values.size(); ++i)
			values[i] = std::pow(values[i], other.values[0]);
		}
	else {
		if(shape.size() != other.shape.size())
			throw std::range_error("NTensor::pow: shape lengths do not match.");

		for(size_t p=0; p<shape.size(); ++p)
			if(shape[p]!=other.shape[p])
				throw std::range_error("NTensor::pow: shapes do not match; direction "
											  +std::to_string(p)+": "
											  +std::to_string(shape[p])+" vs. "
											  +std::to_string(other.shape[p])+".");
		
		for(size_t i=0; i<values.size(); ++i)
			values[i] = std::pow(values[i], other.values[i]);
		}
	
	return *this;
	}

NTensor NTensor::outer_product(const NTensor& a, const NTensor& b)
	{
	// std::cerr << "multiplying " << a << "\n"
	// 			 << "       with " << b << std::endl;
	std::vector<size_t> res_shape;
	res_shape.insert(res_shape.end(), a.shape.begin(), a.shape.end());
	res_shape.insert(res_shape.end(), b.shape.begin(), b.shape.end());

	NTensor res( res_shape, 0.0 );

	for(size_t i=0; i<res.values.size(); ++i) {
		size_t idx_a = i / b.values.size();
		size_t idx_b = i % b.values.size();
		assert(idx_a < a.values.size());
		assert(idx_b < b.values.size());

		res.values[i] = a.values[idx_a] * b.values[idx_b];
		}

	return res;
	}

NTensor NTensor::broadcast(std::vector<size_t> new_shape, size_t pos) const
	{
	// for(auto s: new_shape)
	// 	std::cerr << s << ", ";
	// std::cerr << "\n" << pos << std::endl;
	assert( pos < new_shape.size() );
	assert( shape.size()==1 );
	assert( new_shape[pos]==shape[0] );


	NTensor res(new_shape, 0.);

	size_t lower = 1, higher=1;
	for(size_t s=pos+1; s<new_shape.size(); ++s)
		lower  *= new_shape[s];
	higher = lower * new_shape[pos];

	//  std::cerr << "lower: " << lower << "\nhigher: " << higher << std::endl;

	// Stopwatch sw;
	// sw.start();
	for(size_t i=0; i<res.values.size(); ++i) {
		size_t orig_i = (i % higher) / lower;
		// std::cerr << i << " -> " << orig_i << std::endl;
		assert( orig_i < new_shape[pos] );

		res.values[i] = values[orig_i];
		}

	// sw.stop();
	// std::cerr << "broadcast to " << res.values.size() <<  " took " << sw << std::endl;

	return res;
	}