1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
#include <pybind11/pybind11.h>
#include <sstream>
#include "Functional.hh"
#include "SympyCdb.hh"
#include "PreClean.hh"
#include "Cleanup.hh"
#include "Parser.hh"
#include "Kernel.hh"
#include "DisplaySympy.hh"
#include "algorithms/substitute.hh"
using namespace cadabra;
// #define DEBUG 1
#ifndef NO_SYMPY
sympy::SympyBridge::SympyBridge(const Kernel& k, std::shared_ptr<Ex> ex)
: DisplaySympy(k, *ex), ex(ex)
{
}
sympy::SympyBridge::~SympyBridge()
{
}
pybind11::object sympy::SympyBridge::export_ex()
{
std::ostringstream str;
output(str);
pybind11::module sympy_parser = pybind11::module::import("sympy.parsing.sympy_parser");
auto parse = sympy_parser.attr("parse_expr");
#ifdef DEBUG
std::cerr << str.str() << std::endl;
#endif
pybind11::object ret = parse(str.str());
return ret;
}
void sympy::SympyBridge::import_ex(const std::string& s)
{
preparse_import(s);
#ifdef DEBUG
std::cerr << s << std::endl;
#endif
auto ptr = std::make_shared<Ex>();
cadabra::Parser parser(ptr);
std::stringstream istr(s);
istr >> parser;
pre_clean_dispatch_deep(kernel, *parser.tree);
cleanup_dispatch_deep(kernel, *parser.tree);
#ifdef DEBUG
std::cerr << "importing " << parser.tree->begin() << std::endl;
#endif
import(*parser.tree);
Ex::iterator first=parser.tree->begin();
Ex::iterator orig=tree.begin();
ex->move_ontop(orig, first);
}
#endif
Ex::iterator sympy::apply(const Kernel& kernel, Ex& ex, Ex::iterator& it, const std::vector<std::string>& wrap, std::vector<std::string> args,
const std::string& method)
{
// We first need to print the sub-expression using DisplaySympy,
// optionally with the head wrapped around it and the args added
// (if present).
std::ostringstream str;
for(size_t i=0; i<wrap.size(); ++i) {
str << wrap[i] << "(";
}
DisplaySympy ds(kernel, ex);
ds.output(str, it);
if(wrap.size()>0)
if(args.size()>0) {
for(size_t i=0; i<args.size(); ++i)
str << ", " << args[i];
}
for(size_t i=1; i<wrap.size(); ++i)
str << ")";
str << method;
if(wrap.size()>0)
str << ")";
// We then execute the expression in Python.
//ex.print_recursive_treeform(std::cerr, it);
#ifdef DEBUG
std::cerr << "feeding " << str.str() << std::endl;
std::cerr << "which is " << it << std::endl;
#endif
auto module = pybind11::module::import("sympy.parsing.sympy_parser");
auto parse = module.attr("parse_expr");
pybind11::object obj = parse(str.str());
//std::cerr << "converting result to string" << std::endl;
auto __str__ = obj.attr("__str__");
pybind11::object res = __str__();
std::string result = res.cast<std::string>();
#ifdef DEBUG
std::cerr << "result " << result << std::endl;
#endif
// After that, we construct a new sub-expression from this string by using our
// own parser, and replace the original.
result = ds.preparse_import(result);
auto ptr = std::make_shared<Ex>();
cadabra::Parser parser(ptr);
std::stringstream istr(result);
istr >> parser;
pre_clean_dispatch_deep(kernel, *parser.tree);
cleanup_dispatch_deep(kernel, *parser.tree);
//parser.tree->print_recursive_treeform(std::cerr, parser.tree->begin());
ds.import(*parser.tree);
Ex::iterator first=parser.tree->begin();
#ifdef DEBUG
std::cerr << "reparsed " << first.node << "\n" << Ex(first) << std::endl;
std::cerr << "before " << it.node << "\n" << Ex(it) << std::endl;
#endif
it = ex.move_ontop(it, first);
#ifdef DEBUG
std::cerr << "after " << Ex(it) << std::endl;
std::cerr << "top node " << it.node << std::endl;
#endif
return it;
}
Ex sympy::fill_matrix(const Kernel& kernel, Ex& ex, Ex& rules)
{
// check that object has two children only.
if(ex.number_of_children(ex.begin())!=2) {
throw ConsistencyException("Object should have exactly two indices.");
}
Ex::iterator ind1=ex.child(ex.begin(), 0);
Ex::iterator ind2=ex.child(ex.begin(), 1);
// Get Indices property and from there Coordinates.
const Indices *prop1 = kernel.properties.get<Indices>(ind1);
const Indices *prop2 = kernel.properties.get<Indices>(ind2);
if(prop1!=prop2 || prop1==0)
throw ConsistencyException("Need the indices of object to be declared with Indices property.");
// Run over all values of Coordinates, construct matrix.
Ex matrix("\\matrix");
auto cols=matrix.append_child(matrix.begin(), str_node("\\comma"));
for(unsigned c1=0; c1<prop1->values.size(); ++c1) {
auto row=matrix.append_child(cols, str_node("\\comma"));
for(unsigned c2=0; c2<prop1->values.size(); ++c2) {
// Generate an expression with this component, apply substitution, then stick
// the result into the string that will go to sympy.
Ex c(ex.begin());
Ex::iterator cit1=c.child(c.begin(), 0);
Ex::iterator cit2=c.child(c.begin(), 1);
cit1=c.replace_index(cit1, prop1->values[c1].begin(), true);
cit2=c.replace_index(cit2, prop1->values[c2].begin(), true);
Ex::iterator cit=c.begin();
substitute subs(kernel, c, rules);
if(subs.can_apply(cit)) {
subs.apply(cit);
matrix.append_child(row, cit);
}
else {
zero( matrix.append_child(row, str_node("1"))->multiplier );
}
}
}
return matrix;
}
void sympy::invert_matrix(const Kernel& kernel, Ex& ex, Ex& rules, const Ex& tocompute)
{
if(ex.number_of_children(ex.begin())!=2) {
throw ConsistencyException("Object should have exactly two indices.");
}
auto matrix = fill_matrix(kernel, ex, rules);
auto top=matrix.begin();
std::vector<std::string> wrap;
sympy::apply(kernel, matrix, top, wrap, std::vector<std::string>(), ".inv()");
//matrix.print_recursive_treeform(std::cerr, top);
Ex::iterator ind1=ex.child(ex.begin(), 0);
Ex::iterator ind2=ex.child(ex.begin(), 1);
const Indices *prop1 = kernel.properties.get<Indices>(ind1);
const Indices *prop2 = kernel.properties.get<Indices>(ind2);
Ex::iterator ruleslist=rules.begin();
// Now we need to iterate over the components again and construct sparse rules.
auto cols=matrix.begin(matrix.begin()); // outer comma
auto row=matrix.begin(cols); // first inner comma
for(unsigned c1=0; c1<prop1->values.size(); ++c1) {
auto el =matrix.begin(row); // first element of first inner comma
for(unsigned c2=0; c2<prop2->values.size(); ++c2) {
if(el->is_zero()==false) {
Ex rule("\\equals");
auto rit = rule.append_child(rule.begin(), tocompute.begin());
/* auto cvit = */ rule.append_child(rule.begin(), Ex::iterator(el));
auto i = rule.begin(rit);
//std::cerr << c1 << ", " << c2 << std::endl;
i = rule.replace_index(i, prop1->values[c1].begin(), true);
// i->fl.parent_rel=ind1->fl.parent_rel;
++i;
i = rule.replace_index(i, prop1->values[c2].begin(), true);
// i->fl.parent_rel=ind1->fl.parent_rel;
rules.append_child(ruleslist, rule.begin());
//rule.print_recursive_treeform(std::cerr, rule.begin());
}
++el;
}
++row;
}
}
void sympy::determinant(const Kernel& kernel, Ex& ex, Ex& rules, const Ex& tocompute)
{
auto matrix = fill_matrix(kernel, ex, rules);
auto top=matrix.begin();
std::vector<std::string> wrap;
sympy::apply(kernel, matrix, top, wrap, std::vector<std::string>(), ".det()");
Ex rule("\\equals");
rule.append_child(rule.begin(), tocompute.begin());
rule.append_child(rule.begin(), matrix.begin());
rules.append_child(rules.begin(), rule.begin());
}
void sympy::trace(const Kernel& kernel, Ex& ex, Ex& rules, const Ex& tocompute)
{
auto matrix = fill_matrix(kernel, ex, rules);
auto top=matrix.begin();
std::vector<std::string> wrap;
sympy::apply(kernel, matrix, top, wrap, std::vector<std::string>(), ".trace()");
Ex rule("\\equals");
rule.append_child(rule.begin(), tocompute.begin());
rule.append_child(rule.begin(), matrix.begin());
rules.append_child(rules.begin(), rule.begin());
}
|