1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
|
#include "Cleanup.hh"
#include "Exchange.hh"
#include "Functional.hh"
#include "algorithms/canonicalise.hh"
#include "modules/xperm_new.h"
#include "properties/Trace.hh"
#include "properties/Traceless.hh"
#include "properties/Diagonal.hh"
#include "properties/Derivative.hh"
#include "properties/AntiCommuting.hh"
// #define DEBUG 1
// #define XPERM_DEBUG 1
using namespace cadabra;
canonicalise::canonicalise(const Kernel& k, Ex& tr)
: Algorithm(k, tr), reuse_generating_set(false)
{
}
bool canonicalise::can_apply(iterator it)
{
if(*(it->name)!="\\prod")
if(is_single_term(it)==false)
return false;
// Canonicalise requires strict monomial structure: no products which contain
// sums as factors. Products as factors are ok, they do not lead to multiple
// identically named free indices.
auto sum_or_prod = find_in_subtree(tr, it, [](Ex::iterator tst) {
if(*tst->name=="\\sum") return true;
return false;
}, false);
if(sum_or_prod!=tr.end()) {
#ifdef DEBUG
std::cerr << "trying to canonicalise nested product/sum " << Ex(it) << " " << Ex(sum_or_prod) << std::endl;
#endif
return false;
}
return true;
}
bool canonicalise::remove_traceless_traces(iterator& it)
{
// Remove any traces of traceless tensors (this is best done early).
sibling_iterator facit=tr.begin(it);
while(facit!=tr.end(it)) {
const Traceless *trl=kernel.properties.get<Traceless>(facit);
if(trl) {
unsigned int ihits=0;
tree_exact_less_mod_prel_obj comp(&kernel.properties);
std::set<Ex, tree_exact_less_mod_prel_obj> countmap(comp);
index_iterator indit=begin_index(facit);
while(indit!=end_index(facit)) {
bool incremented_now=false;
auto ind=kernel.properties.get<Indices>(indit, true);
if(ind) {
// The indexs need to be in the set for which the object is
// traceless (if specified, otherwise accept all).
if(trl->index_set_names.find(ind->set_name)!=trl->index_set_names.end() || trl->index_set_names.size()==0) {
incremented_now=true;
++ihits;
}
}
else incremented_now=true;
// Having no name is treated as having the right name
if(countmap.find(Ex(indit))==countmap.end()) {
countmap.insert(Ex(indit));
}
else if(incremented_now) {
zero(it->multiplier);
return true;
}
++indit;
}
iterator parent=it;
if (tr.number_of_children(it)==1 && !tr.is_head(it)) parent=tr.parent(it);
const Trace *trace=kernel.properties.get<Trace>(parent);
if(trace) {
int tmp;
auto impi=kernel.properties.get_with_pattern<ImplicitIndex>(facit, tmp, "");
if(impi.first->explicit_form.size()>0) {
// Does the explicit form have two more indices of the right type?
Ex::iterator eform=impi.first->explicit_form.begin();
unsigned int ehits=0;
indit=begin_index(eform);
while(indit!=end_index(eform)) {
auto ind=kernel.properties.get<Indices>(indit, true);
if(trl->index_set_names.find(ind->set_name)!=trl->index_set_names.end() && ind->set_name==trace->index_set_name) ++ehits;
if(ehits - ihits > 1) {
zero(it->multiplier);
return true;
}
++indit;
}
}
}
}
++facit;
}
return false;
}
bool canonicalise::remove_vanishing_numericals(iterator& it)
{
// Remove Diagonal objects with numerical indices which are not all the same.
sibling_iterator facit=tr.begin(it);
while(facit!=tr.end(it)) {
const Diagonal *dgl=kernel.properties.get<Diagonal>(facit);
if(dgl) {
index_iterator indit=begin_index(facit);
if(indit->is_rational()) {
index_iterator indit2=indit;
++indit2;
while(indit2!=end_index(facit)) {
if(indit2->is_rational()==false)
break;
if(indit2->multiplier!=indit->multiplier) {
zero(it->multiplier);
return true;
}
++indit2;
}
}
}
++facit;
}
return false;
}
Indices::position_t canonicalise::position_type(iterator it) const
{
const Indices *ind=kernel.properties.get<Indices>(it, true);
if(ind)
return ind->position_type;
return Indices::free;
}
bool canonicalise::only_one_on_derivative(iterator i1, iterator i2) const
{
int num=0;
iterator p1=tr.parent(i1);
const Derivative *der1=kernel.properties.get<Derivative>(p1);
if(der1) ++num;
iterator p2=tr.parent(i2);
const Derivative *der2=kernel.properties.get<Derivative>(p2);
if(der2) ++num;
if(num==1) return true;
else return false;
}
Algorithm::result_t canonicalise::apply(iterator& it)
{
#ifdef DEBUG
std::cerr << "canonicalise at " << it << std::endl;
#endif
// std::cerr << is_single_term(it) << std::endl;
Stopwatch totalsw;
totalsw.start();
prod_wrap_single_term(it);
if(remove_traceless_traces(it)) {
cleanup_dispatch(kernel, tr, it);
return result_t::l_applied;
}
if(remove_vanishing_numericals(it)) {
cleanup_dispatch(kernel, tr, it);
return result_t::l_applied;
}
// Now the real thing...
index_map_t ind_free, ind_dummy;
classify_indices(it, ind_free, ind_dummy);
index_position_map_t ind_pos_free, ind_pos_dummy;
fill_index_position_map(it, ind_free, ind_pos_free);
fill_index_position_map(it, ind_dummy, ind_pos_dummy);
const unsigned int total_number_of_indices=ind_free.size()+ind_dummy.size();
#ifdef DEBUG
// std::cerr << "free index position map:\n";
// for(auto& ip: ind_pos_free)
// std::cerr << Ex(ip.first) << " @ " << ip.second << std::endl;;
#endif
// If there are no indices, there is nothing to do here...
if(total_number_of_indices==0) {
#ifdef DEBUG
std::cerr << "no indices on " << Ex(it) << std::endl;
#endif
prod_unwrap_single_term(it);
return result_t::l_no_action;
}
// We currently do not handle situations in which one of the
// factors in a product is a sum. To be precise, we do not handle
// situations in which one or both of the indices in a dummy
// pair appear multiple times (in the different terms of the sum).
// Ditto for free indices; these need to sit in one particular
// place in the tree, not in multiple. For these situations, we
// will bail out here, but the user can always distribute and then
// canonicalise.
#ifdef DEBUG
// std::cerr << "dummies:\n";
// for(auto& dummy: ind_dummy)
// std::cerr << dummy.first;
// std::cerr << "free:\n";
// for(auto& fr: ind_free)
// std::cerr << fr.first;
#endif
for(auto& dummy: ind_dummy)
if(ind_dummy.count(dummy.first)>2)
return result_t::l_no_action;
// PROGRESS
// for(auto& free: ind_free)
// if(ind_free.count(free.first)>1) {
// std::cerr << "bailing out" << std::endl;
// return result_t::l_no_action;
// }
result_t res=result_t::l_no_action;
// Construct the "name to slot" map from the order in ind_free & ind_dummy.
// Also construct the free and dummy lists.
// And a map from index number to iterator (for later).
std::vector<int> vec_perm;
// We need two arrays: one which maps from the order in which slots appear in
// the tensor to the corresponding iterator (this is provided by the standard
// index routines already), and one which maps from the order in which the indices
// appear in the base map to an Ex object (so that we can replace).
std::vector<Ex::iterator> num_to_it_map(total_number_of_indices);
std::vector<Ex> num_to_tree_map;
#ifdef DEBUG
std::cerr << "indices:" << std::endl;
auto ii=begin_index(it);
while(ii!=end_index(it)) {
std::cerr << ii << std::endl;
++ii;
}
#endif
// Handle free indices.
#ifdef DEBUG
std::cerr << "found " << ind_free.size() << " free indices" << std::endl;
#endif
index_map_t::iterator sorted_it=ind_free.begin();
int curr_index=0;
while(sorted_it!=ind_free.end()) {
index_position_map_t::iterator ii=ind_pos_free.find(sorted_it->second);
num_to_it_map.at(ii->second)=ii->first;
num_to_tree_map.push_back(Ex(ii->first));
#ifdef DEBUG
std::cerr << sorted_it->second << " free at pos " << ii->second+1 << std::endl;
#endif
vec_perm.push_back(ii->second+1);
++sorted_it;
}
curr_index=0;
// Handle dummy indices
// In order to ensure that dummy indices from different index types do not
// get mixed up, we need to collect information about the types of all
// dummy indices.
// The key in the maps below is the set_name of the Indices property, or the
// set_name of the parent if applicable. If none, it will be ' undeclared'.
typedef std::map<std::string, std::vector<int> > dummy_set_t;
dummy_set_t dummy_sets;
#ifdef DEBUG
std::cerr << "found " << ind_dummy.size() << " dummies" << std::endl;
#endif
sorted_it=ind_dummy.begin();
while(sorted_it!=ind_dummy.end()) {
// We insert the dummy indices in pairs (canonicalise only acts on
// expressions which have dummies coming in doublets, not the more
// general cadabra dummy concept).
// The lower index come first, and then the upper index.
index_position_map_t::const_iterator ii=ind_pos_dummy.find(sorted_it->second);
index_map_t::const_iterator next_it=sorted_it;
++next_it;
index_position_map_t::const_iterator i2=ind_pos_dummy.find(next_it->second);
#ifdef XPERM_DEBUG
std::cerr << *(ii->first->name) << " at pos " << ii->second+1 << " " << ii->first->fl.parent_rel << std::endl;
#endif
switch(ii->first->fl.parent_rel) {
case str_node::p_super:
case str_node::p_none:
// vec_perm.push_back(ii->second+1);
// vec_perm.push_back(i2->second+1);
// num_to_tree_map.push_back(Ex(ii->first));
// num_to_tree_map.push_back(Ex(i2->first));
break;
case str_node::p_sub:
std::swap(ii, i2);
// vec_perm.push_back(i2->second+1);
// vec_perm.push_back(ii->second+1);
// num_to_tree_map.push_back(Ex(i2->first));
// num_to_tree_map.push_back(Ex(ii->first));
break;
default:
break;
}
vec_perm.push_back(ii->second+1);
vec_perm.push_back(i2->second+1);
num_to_tree_map.push_back(Ex(ii->first));
num_to_tree_map.push_back(Ex(i2->first));
num_to_it_map[ii->second]=ii->first;
num_to_it_map[i2->second]=i2->first;
// If the indices are not in canonical order and they are separated
// by a Derivative, we cannot raise/lower, so they should stay in this order.
// Have to do this by putting those indices in a different set and then
// setting the metric flag to 0. Ditto when only one index is on a derivative
// (canonicalising usually makes the expression uglier in that case).
iterator tmp;
if( ( (separated_by_derivative(tr.parent(ii->first), tr.parent(i2->first),tmp)
|| only_one_on_derivative(ii->first, i2->first) )
&& position_type(ii->first)==Indices::fixed ) ||
position_type(ii->first)==Indices::independent ) {
dummy_sets[" NR "+get_index_set_name(ii->first)].push_back(ii->second+1);
dummy_sets[" NR "+get_index_set_name(i2->first)].push_back(i2->second+1);
}
else {
if( kernel.properties.get<AntiCommuting>(ii->first, true) != 0 ) {
dummy_sets[" AC "+get_index_set_name(ii->first)].push_back(ii->second+1);
dummy_sets[" AC "+get_index_set_name(i2->first)].push_back(i2->second+1);
}
else {
dummy_sets[get_index_set_name(ii->first)].push_back(ii->second+1);
dummy_sets[get_index_set_name(i2->first)].push_back(i2->second+1);
}
}
++sorted_it;
++sorted_it;
}
// FIXME: kludge to handle numerical indices; should be done through lookup
// in Integer properties. This one does NOT work when there is more than
// one index set; we would need more clever logic to figure out which
// index type the numerical index corresponds to.
// debugout << index_sets.size() << std::endl;
// if(index_sets.size()==1) {
// for(unsigned int kk=0; kk<indexpos_to_indextype.size(); ++kk)
// if(indexpos_to_indextype[kk]=="numerical")
// indexpos_to_indextype[kk]=index_sets.begin()->first;
// }
//
// TRACE: remove later THIS DOES NOT SOLVE THE PROBLEM, ITERATORS ABOVE SEEM TO BE WRONG.
// prod_unwrap_single_term(it);
// return result_t::l_no_action;
// Construct the generating set.
std::vector<unsigned int> base_here;
if(!reuse_generating_set || generating_set.size()==0) {
generating_set.clear();
// Symmetry of individual tensors.
sibling_iterator facit=tr.begin(it);
int curr_pos=0;
while(facit!=tr.end(it)) {
const TableauBase *tba=kernel.properties.get<TableauBase>(facit);
// std::cerr << Ex(facit) << " has tableaubase " << tba << std::endl;
if(tba) {
unsigned int num_ind=number_of_indices(facit);
// Add indices to the base. We used to add everything except the last one, but that
// seems to be the wrong thing to do after the XPERM -> XPERM_EXT upgrade (see Jose's email).
for(unsigned int kk=0; kk<num_ind; ++kk)
base_here.push_back(curr_pos+kk+1);
// loop over tabs
for(unsigned int ti=0; ti<tba->size(kernel.properties, tr, facit); ++ti) {
TableauBase::tab_t tmptab=tba->get_tab(kernel.properties, tr,facit,ti);
// std::cerr << tmptab << std::endl;
if(tmptab.number_of_rows()>0) {
for(unsigned int col=0; col<tmptab.row_size(0); ++col) { // anti-symmetry in all inds in a col
if(tmptab.column_size(col)>1) {
// all pairs NEW: SGS
for(unsigned int indnum1=0; indnum1<tmptab.column_size(col)-1; ++indnum1) {
// for(unsigned int indnum2=indnum1+1; indnum2<tmptab.column_size(col); ++indnum2) {
std::vector<int> permute(total_number_of_indices+2);
for(unsigned int kk=0; kk<permute.size(); ++kk)
permute[kk]=kk+1;
std::swap(permute[tmptab(indnum1,col)+curr_pos],
permute[tmptab(indnum1+1,col)+curr_pos]);
std::swap(permute[total_number_of_indices+1],
permute[total_number_of_indices]); // anti-symmetry
generating_set.push_back(permute);
}
}
}
}
if(tmptab.number_of_rows()==1 && tmptab.row_size(0)>1) { // symmetry, if all cols of size 1
// all pairs
for(unsigned int indnum1=0; indnum1<tmptab.row_size(0)-1; ++indnum1) {
// for(unsigned int indnum2=indnum1+1; indnum2<tmptab.row_size(0); ++indnum2) {
std::vector<int> permute(total_number_of_indices+2);
for(unsigned int kk=0; kk<permute.size(); ++kk)
permute[kk]=kk+1;
std::swap(permute[tmptab(0,indnum1)+curr_pos],
permute[tmptab(0,indnum1+1)+curr_pos]);
generating_set.push_back(permute);
}
}
else if(tmptab.number_of_rows()>0) { // find symmetry under equal-length column exchange
unsigned int column_height=tmptab.column_size(0);
unsigned int this_set_start=0;
for(unsigned int col=1; col<=tmptab.row_size(0); ++col) {
if(col==tmptab.row_size(0) || column_height!=tmptab.column_size(col)) {
if(col-this_set_start>1) {
// two or more equal-length columns found, make generating set
for(unsigned int col1=this_set_start; col1+1<=col-1; ++col1) {
// for(unsigned int col2=this_set_start+1; col2<col; ++col2) {
std::vector<int> permute(total_number_of_indices+2);
for(unsigned int kk=0; kk<permute.size(); ++kk)
permute[kk]=kk+1;
for(unsigned int row=0; row<column_height; ++row) {
// txtout << row << " " << col1 << std::endl;
std::swap(permute[tmptab(row,col1)+curr_pos],
permute[tmptab(row,col1+1)+curr_pos]);
}
generating_set.push_back(permute);
}
}
this_set_start=col;
if(col<tmptab.row_size(0))
column_height=tmptab.column_size(col);
}
}
}
}
// txtout << "loop over tabs done" << std::endl;
curr_pos+=num_ind;
}
else {
unsigned int num_ind=number_of_indices(facit);
if(num_ind==1)
base_here.push_back(curr_pos+1);
else {
for(unsigned int kk=0; kk<num_ind; ++kk)
base_here.push_back(curr_pos+kk+1);
}
curr_pos+=number_of_indices(facit); // even if tba=0, this factor may contain indices
}
++facit;
}
// Symmetry under tensor exchange.
if(exchange::get_node_gs(kernel.properties, tr, it, generating_set)==false) {
zero(it->multiplier);
res=result_t::l_applied;
}
}
// End of construction of generating set.
#ifdef XPERM_DEBUG
std::cerr << "generating set size = " << generating_set.size() << " multiplier " << *it->multiplier << std::endl;
#endif
// Even if generating_set.size()==0 we still need to continue,
// because we still need to do simple index relabelling.
// if(generating_set.size()==0) {
// prod_unwrap_single_term(it);
// return result_t::l_no_action;
// }
if(*it->multiplier!=0) {
// Fill data for the xperm routines.
int *gs=0;
if(generating_set.size()>0) {
gs=new int[generating_set.size()*generating_set[0].size()];
for(unsigned int i=0; i<generating_set.size(); ++i) {
for(unsigned int j=0; j<total_number_of_indices+2; ++j) {
gs[i*(total_number_of_indices+2)+j]=generating_set[i][j];
#ifdef XPERM_DEBUG
std::cerr << gs[i*(total_number_of_indices+2)+j] << " ";
#endif
}
#ifdef XPERM_DEBUG
std::cerr << std::endl;
#endif
}
}
// Setup the arrays for xperm from our own data structures.
int *base=new int[base_here.size()];
int *perm=new int[total_number_of_indices+2];
int *cperm=new int[total_number_of_indices+2];
for(unsigned int i=0; i<base_here.size(); ++i)
base[i]=base_here[i];
assert(vec_perm.size()==total_number_of_indices);
for(unsigned int i=0; i<total_number_of_indices; ++i)
perm[i]=vec_perm[i];
perm[total_number_of_indices]=total_number_of_indices+1;
perm[total_number_of_indices+1]=total_number_of_indices+2;
int *lengths_of_dummy_sets=new int[dummy_sets.size()];
int *dummies =new int[ind_dummy.size()];
int *metric_signatures =new int[dummy_sets.size()];
int dsi=0;
int cdi=0;
dummy_set_t::iterator ds=dummy_sets.begin();
while(ds!=dummy_sets.end()) {
lengths_of_dummy_sets[dsi]=ds->second.size();
for(unsigned int k=0; k<ds->second.size(); ++k)
dummies[cdi++]=(ds->second)[k];
if(ds->first.substr(0,4)==" NR ")
metric_signatures[dsi]=0;
else {
if(ds->first.substr(0,4)==" AC ")
metric_signatures[dsi]=-1;
else
metric_signatures[dsi]=1;
}
++ds;
++dsi;
}
// Setup repeated sets. These are free indices which appear more
// than once (so these are coordinates or integers). Take them out
// of the free set and store them in the repeated sets.
#ifdef DEBUG
std::cerr << "creating repeated sets" << std::endl;
#endif
std::vector<int> ind_repeated_lengths;
std::vector<Ex::iterator> ind_repeated;
auto fi = ind_free.begin();
auto prev=fi;
if(fi!=ind_free.end()) {
++fi;
while(fi!=ind_free.end()) {
int len=1;
while(fi!=ind_free.end() && fi->first==prev->first) {
if(len==1)
ind_repeated.push_back(prev->second);
ind_repeated.push_back(fi->second);
++len;
++fi;
}
if(len!=1) {
ind_free.erase(prev, fi);
ind_repeated_lengths.push_back(len);
}
if(fi!=ind_free.end()) {
prev=fi;
++fi;
}
}
}
// free_indices stores a list of index slots which contain a free
// index.
int *free_indices=new int[ind_free.size()];
sorted_it=ind_free.begin();
curr_index=0;
while(sorted_it!=ind_free.end()) {
index_position_map_t::iterator ii=ind_pos_free.find(sorted_it->second);
free_indices[curr_index++]=ii->second+1;
++sorted_it;
}
// std::cerr << "repeated sets:\n";
// for(auto& f: ind_repeated)
// std::cerr << *(f->multiplier) << " ";
// std::cerr << "\nrepeated lengths:\n";
// for(auto& i: ind_repeated_lengths)
// std::cerr << i << " ";
// std::cerr << std::endl;
int *repeated_indices = new int[ind_repeated.size()];
int *lengths_of_repeated_sets = new int[ind_repeated_lengths.size()];
// repeated_indices contains a list of slots which contain repeated indices.
for(size_t i=0; i<ind_repeated.size(); ++i) {
auto pos=ind_pos_free.find(ind_repeated[i]);
repeated_indices[i]=pos->second+1;
}
for(size_t i=0; i<ind_repeated_lengths.size(); ++i)
lengths_of_repeated_sets[i]=ind_repeated_lengths[i];
#ifdef XPERM_DEBUG
std::cerr << "perm:" << std::endl;
for(unsigned int i=0; i<total_number_of_indices+2; ++i)
std::cerr << perm[i] << " ";
std::cerr << std::endl;
std::cerr << "base:" << std::endl;
for(unsigned int i=0; i<base_here.size(); ++i)
std::cerr << base[i] << " ";
std::cerr << std::endl;
std::cerr << "free indices in slots:" << std::endl;
for(unsigned int i=0; i<ind_free.size(); ++i)
std::cerr << free_indices[i] << " ";
std::cerr << std::endl;
std::cerr << "lengths_of_dummy_sets:" << std::endl;
for(unsigned int i=0; i<dummy_sets.size(); ++i)
std::cerr << lengths_of_dummy_sets[i]
<< " (metric=" << metric_signatures[i] << ") ";
std::cerr << std::endl;
std::cerr << "dummies in slots:" << std::endl;
for(unsigned int i=0; i<ind_dummy.size(); ++i)
std::cerr << dummies[i] << " ";
std::cerr << std::endl;
std::cerr << "lengths_of_repeated_sets:" << std::endl;
for(unsigned int i=0; i<ind_repeated_lengths.size(); ++i)
std::cerr << lengths_of_repeated_sets[i];
std::cerr << std::endl;
std::cerr << "repeated indices in slots:" << std::endl;
for(unsigned int i=0; i<ind_repeated.size(); ++i)
std::cerr << repeated_indices[i];
std::cerr << std::endl;
#endif
Stopwatch sw;
sw.start();
// JMM now uses a different convention.
int *perm1 = new int[total_number_of_indices+2];
int *perm2 = new int[total_number_of_indices+2];
int *free_indices_new_order = new int[ind_free.size()];
int *dummies_new_order = new int[ind_dummy.size()];
int *repeated_new_order = new int[ind_repeated.size()];
inverse(perm, perm1, total_number_of_indices+2);
for(size_t i=0; i<ind_free.size(); i++) {
free_indices_new_order[i] = onpoints(free_indices[i], perm1, total_number_of_indices+2);
}
for(size_t i=0; i<ind_dummy.size(); i++) {
dummies_new_order[i] = onpoints(dummies[i], perm1, total_number_of_indices+2);
}
for(size_t i=0; i<ind_repeated.size(); i++) {
repeated_new_order[i] = onpoints(repeated_indices[i], perm1, total_number_of_indices+2);
}
#ifdef XPERM_DEBUG
std::cerr << "perm1: ";
for(unsigned int i=0; i<total_number_of_indices; ++i) {
std::cerr << perm1[i] << " ";
}
std::cerr << std::endl;
#endif
// Brief reminder of the meaning of the various arrays, using the example in
// Jose's xPerm paper (not yet updated to reflect the _ext version which allows
// for multiple dummy sets; see below for repeated (numerical) indices):
//
// expression = R_{b}^{1d1} R_{c}^{bac}
//
// sorted_index_set = {a,d,b,-b,c,-c,1,1}
// base = {1,2,3, 4,5, 6,7,8}
// dummies = {3,4,5,6}
// sorted_index_set[3] and [4] is a dummy pair
// sorted_index_set[5] and [6] is a dummy pair
// these can just be in sorted order, i.e. only referring
// to the sorted_index_set.
//
// frees = {1,2}
// sorted_index_set[1] and [2] are free indices
//
// dummies_new_order = {dn[1], dn[2], ...}
// slot dn[1] and dn[2] form a dummy pair ?
//
// free_indices_new_order = {...}
// these slots contain free indices ?
//
// perm = {4,7,2,8,6,3,1,5,9,10}
// 1st slot contains sorted_index_set[4] ( = -b )
// 2nd slot contains sorted_index_set[7] ( = 1 )
// etc.
//
// perm1 = {p1[1], p1[2], ...}
//
// 1st index sits in slot p1[1] ?
//
// cperm = {1,3,4,5,2,7,6,8,9,10}
//
// 1st slot gets sorted_index_set[1] ( = a )
// 2nd slot gets sorted_index_set[3] ( = b )
// ...
//
// for the repeated set logic:
// (in both perm and free, numbers refer to index names (each index name has a separate number
// even if it occurs multiple times).
//
// R_{3 3 m 3}
// perm: 6
// 2 3 1 4 5 6 (slot 3 gets index name 1, slot 1 index 2, slot 3 index 3, slot 4 index 4)
// base: 4
// 1 2 3 4
// free: 1
// 1 (index name 1 is free)
// number of repes: 3
// 2 3 4 (index names 2 to 4 are repeated);
// R_{3 m 3 3}
// perm: 6
// 2 1 3 4 5 6 (slot 2 gets index name 1, ...)
// base: 4
// 1 2 3 4 (always the same)
// free: 1
// 1 (index name 1 is free)
// number of repes: 3
// 2 3 4 (2nd, 3rd and 4th index names are repeated: index 1, 3 and 4)
canonical_perm_ext(perm1, // permutation to be canonicalised
total_number_of_indices+2, // degree (+2 for the overall sign)
1, // is this a strong generating set?
base, // base for the strong generating set
base_here.size(), // its length
gs, // generating set
generating_set.size(), // its size
free_indices_new_order, // free indices
ind_free.size(), // number of free indices
lengths_of_dummy_sets, // list of lengths of dummy sets
dummy_sets.size(), // its length
dummies_new_order, // list with pairs of dummies
ind_dummy.size(), // its length
metric_signatures, // list of symmetries of metric
lengths_of_repeated_sets, // list of lengths of repeated-sets
ind_repeated_lengths.size(),// its length
repeated_new_order, // list with repeated indices
ind_repeated.size(), // its length
perm2); // output
if (perm2[0] != 0) inverse(perm2, cperm, total_number_of_indices+2);
else copy_list(perm2, cperm, total_number_of_indices+2);
delete [] dummies_new_order;
delete [] free_indices_new_order;
delete [] repeated_new_order;
delete [] perm1;
delete [] perm2;
sw.stop();
// std::cerr << "xperm took " << sw << std::endl;
#ifdef XPERM_DEBUG
std::cerr << "cperm:" << std::endl;
for(unsigned int i=0; i<total_number_of_indices+2; ++i)
std::cerr << cperm[i] << " ";
std::cerr << std::endl;
#endif
if(cperm[0]!=0) {
bool has_changed=false;
for(unsigned int i=0; i<total_number_of_indices+1; ++i) {
if(perm[i]!=cperm[i]) {
has_changed=true;
break;
}
}
if(has_changed) {
if(static_cast<unsigned int>(cperm[total_number_of_indices+1])==total_number_of_indices+1) {
flip_sign(it->multiplier);
}
res = result_t::l_applied;
for(unsigned int i=0; i<total_number_of_indices; ++i) {
// In the new final permutation, e.g.
//
// 1 5 6 8 7 2 3 4 10 9
//
// we place first the first index (m), which goes to the first slot. Then
// we put n, which can only go the fifth slot. Then we put p, which can go
// to 6,7,8, so that it goes to 6. Then we put r (not q), which can go to 7
// and 8, and so we put it at 7, etc.
#ifdef XPERM_DEBUG
std::cerr << "putting index " << i+1 << "(" << *num_to_tree_map[i].begin()->name
<< ", " << num_to_tree_map[i].begin()->fl.parent_rel
<< ") in slot " << cperm[i] << std::endl;
#endif
iterator ri = tr.replace_index(num_to_it_map[cperm[i]-1], num_to_tree_map[i].begin());
// assert(ri->fl.parent_rel==num_to_tree_map[i].begin()->fl.parent_rel);
ri->fl.parent_rel=num_to_tree_map[i].begin()->fl.parent_rel;
}
}
}
else {
zero(it->multiplier);
res = result_t::l_applied;
}
if(gs)
delete [] gs;
delete [] base;
delete [] repeated_indices;
delete [] lengths_of_repeated_sets;
delete [] metric_signatures;
delete [] lengths_of_dummy_sets;
delete [] dummies;
delete [] cperm;
delete [] perm;
delete [] free_indices;
}
#ifdef DEBUG
std::cerr << "=====\n";
#endif
cleanup_dispatch(kernel, tr, it);
totalsw.stop();
// std::cerr << "total canonicalise took " << totalsw << std::endl;
return res;
}
|