1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
|
\cdbalgorithm{canonicalorder}{}
Orders the indicated objects in the expression in canonical order. On
a simple product of objects it works as a partial product sort,
\begin{screen}{1,2}
C B E D A;
@canonicalorder!(%)(A, B, E);
C A B D E;
\end{screen}
It can, however, also be used to sort indices. Thereby, it facilitates
imposing index symmetry on a tensor with open indices, as the
following example illustrates.
\begin{screen}{1,2}
A^{m n p} B^{q r} + A^{q m} B^{n p r};
@canonicalorder!(%)( ^{m}, ^{n}, ^{p}, ^{r}, ^{q} );
A^{m n p} B^{r q} + A^{m n} B^{p r q};
\end{screen}
~
\cdbseealgo{acanonicalorder}
\cdbseealgo{prodsort}
\cdbseealgo{canonicalise}
|