1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
#include "Cleanup.hh"
#include "algorithms/combine.hh"
#include "properties/Matrix.hh"
using namespace cadabra;
combine::combine(const Kernel& k, Ex& e, Ex& t)
: Algorithm(k, e), trace_op(t)
{
}
bool combine::can_apply(iterator it)
{
if(*it->name=="\\prod") return true;
return false;
}
Algorithm::result_t combine::apply(iterator& it)
{
sibling_iterator sib=tr.begin(it);
index_map_t ind_free, ind_dummy;
std::vector<Ex::iterator> dummies;
while(sib!=tr.end(it)) { // iterate over all factors in the product
sibling_iterator ch=tr.begin(sib);
while(ch!=tr.end(sib)) { // iterate over all indices of this factor
// auto parent=tr.parent(sib);
if(ch->fl.parent_rel==str_node::p_sub || ch->fl.parent_rel==str_node::p_super) {
classify_add_index(ch, ind_free, ind_dummy);
}
++ch;
}
++sib;
}
if(ind_dummy.size()==0) return result_t::l_no_action;
while(ind_dummy.begin()!=ind_dummy.end()) {
bool found=false;
index_map_t::iterator start=ind_dummy.begin(), backup;
while(!found && start!=ind_dummy.end()) {
iterator parent=tr.parent(start->second);
sibling_iterator ch=tr.begin(parent), last_part;
while(ch!=tr.end(parent)) {
auto fnd=ind_dummy.find((Ex::iterator)ch);
if(fnd!=ind_dummy.end()) last_part=ch;
++ch;
}
if(last_part==start->second) {
++last_part;
if(last_part==tr.end(parent)) {
// Dummy index with nothing to the right is preferred
found=true;
}
else backup=start;
}
if(!found) ++start;
}
// As a backup, we use a dummy index with only non-dummies to the right
if(!found) start=backup;
bool paired=true;
while(paired && start!=ind_dummy.end()) {
iterator parent=tr.parent(start->second);
sibling_iterator ch=tr.begin(parent), last_part;
while(ch!=tr.end(parent) && ind_dummy.size()>0) {
auto fnd2=ind_dummy.equal_range((Ex::iterator)ch);
auto fnd1=fnd2.first;
if(fnd1->second!=ch) ++fnd1;
if(fnd1->second==ch) {
dummies.insert(dummies.end(), ch);
ind_dummy.erase(fnd1);
last_part=ch;
}
++ch;
}
auto fnd=ind_dummy.find((Ex::iterator)last_part);
if(fnd==ind_dummy.end()) {
last_part->flip_parent_rel();
fnd=ind_dummy.find((Ex::iterator)last_part);
last_part->flip_parent_rel();
}
if(fnd==ind_dummy.end()) {
// Contraction ends because we are on a vector
// It could also be a trace if we removed the paired index more than one iteration ago
paired=false;
}
else {
start=fnd;
index_map_t::iterator check=ind_dummy.end();
iterator parent=tr.parent(start->second);
sibling_iterator ch=tr.begin(parent), first_part;
while(check==ind_dummy.end()) {
first_part=ch;
check=ind_dummy.find((Ex::iterator)ch);
++ch;
}
if(first_part!=start->second) {
throw NotYetImplemented("Evaluation requires transposing a matrix.");
return result_t::l_no_action;
}
}
}
}
std::string trace_start="";
std::vector<Ex::iterator>::iterator dums1=dummies.begin(), dums2;
dums2=dums1;
++dums2;
while(dums1!=dummies.end() && dums2!=dummies.end()) {
// txtout << "analysing " << std::endl;
// txtout << *(dums1->second->name) << std::endl;
bool isbrack1=false, isbrack2=false;
bool ismatorvec1=false, ismatorvec2=false;
// These are both to recognize traces
bool diffparents=tr.parent(*dums1)!=tr.parent(*dums2);
bool consecutive=*(*dums1)->name==*(*dums2)->name;
const Matrix *mat1=kernel.properties.get<Matrix>(tr.parent(*dums1));
if(mat1)
ismatorvec1=true;
else if(*(tr.parent(*dums1)->name)=="\\indexbracket") {
ismatorvec1=true;
isbrack1=true;
}
else if(tr.number_of_children(tr.parent(*dums1))==1)
ismatorvec1=true;
const Matrix *mat2=kernel.properties.get<Matrix>(tr.parent(*dums2));
if(mat2)
ismatorvec2=true;
else if(*(tr.parent(*dums2)->name)=="\\indexbracket") {
ismatorvec2=true;
isbrack2=true;
}
else if(tr.number_of_children(tr.parent(*dums2))==1)
ismatorvec2=true;
if(ismatorvec1 && ismatorvec2 && diffparents && consecutive) {
// txtout << "gluing " << *(dums2->second->name) << std::endl;
// create new indexbracket with product node
iterator outerbrack=tr.insert(tr.parent(*dums1), str_node("\\indexbracket"));
iterator brackprod=tr.append_child(outerbrack, str_node("\\prod"));
iterator parn1=tr.parent(*dums1);
iterator parn2=tr.parent(*dums2);
// count how many sign changes stand between the two objects
int sign=1;
unsigned int hits=0;
Ex_comparator compare(kernel.properties);
sib=tr.begin(it);
while(hits<2) {
if(hits==1 && sib!=parn2) {
// pass arguments manually as can_swap() does not check them
bool isbrack=*(sib->name)=="\\indexbracket";
if(isbrack && isbrack2) {
auto es=compare.equal_subtree(tr.begin(parn2), tr.begin(sib));
sign*=compare.can_swap_components(tr.begin(parn2), tr.begin(sib), es);
}
else if(isbrack && !isbrack2) {
auto es=compare.equal_subtree(parn2, tr.begin(sib));
sign*=compare.can_swap_components(parn2, tr.begin(sib), es);
}
else if(!isbrack && isbrack2) {
auto es=compare.equal_subtree(tr.begin(parn2), sib);
sign*=compare.can_swap_components(tr.begin(parn2), sib, es);
}
else {
auto es=compare.equal_subtree(parn2, sib);
sign*=compare.can_swap_components(parn2, sib, es);
}
}
if(sib==parn1 || sib==parn2) ++hits;
++sib;
}
if(sign==-1) flip_sign(brackprod->multiplier);
// remove the dummy index from these two objects, and move
// other (dummy or not) indices to the outer indexbracket.
sibling_iterator ind1=tr.begin(tr.parent(*dums1));
sibling_iterator stop1=tr.end(tr.parent(*dums1));
if(isbrack1)
++ind1;
while(ind1!=stop1) {
if(ind1!=*dums1) {
sibling_iterator nxt=ind1;
++nxt;
tr.reparent(outerbrack, ind1, nxt);
}
++ind1;
// ind1=tr.erase(ind1);
}
tr.erase(*dums1);
sibling_iterator ind2=tr.begin(tr.parent(*dums2));
sibling_iterator stop2=tr.end(tr.parent(*dums2));
if(isbrack2)
++ind2;
while(ind2!=stop2) {
if(ind2!=*dums2) {
sibling_iterator nxt=ind2;
++nxt;
tr.reparent(outerbrack, ind2, nxt);
}
++ind2;
// ind2=tr.erase(ind2);
}
tr.erase(*dums2);
// put both objects inside the indexbracket.
if(isbrack1) {
sibling_iterator nxt=tr.begin(parn1);
++nxt;
// tr.begin(parn1)->fl.bracket=str_node::b_round;
tr.reparent(brackprod, tr.begin(parn1), nxt);
multiply(brackprod->multiplier, *parn1->multiplier);
tr.erase(parn1);
}
else {
sibling_iterator nxt=parn1;
++nxt;
// parn1->fl.bracket=str_node::b_round;
tr.reparent(brackprod,parn1,nxt);
}
if(isbrack2) {
sibling_iterator nxt=tr.begin(parn2);
++nxt;
// tr.begin(parn2)->fl.bracket=str_node::b_round;
tr.reparent(brackprod, tr.begin(parn2), nxt);
multiply(brackprod->multiplier, *parn2->multiplier);
tr.erase(parn2);
}
else {
sibling_iterator nxt=parn2;
++nxt;
// parn2->fl.bracket=str_node::b_round;
tr.reparent(brackprod,parn2,nxt);
}
}
if(consecutive) {
++dums1;
++dums2;
if(dums2!=dummies.end() && trace_op.size()>0) {
if(*(*dums2)->name==trace_start) {
iterator parn=tr.parent(*dums2);
iterator trace=tr.insert(parn, str_node(trace_op.begin()->name));
sibling_iterator nxt=tr.begin(parn);
++nxt;
++dums1;
++dums2;
tr.reparent(trace, tr.begin(parn), nxt);
multiply(trace->multiplier, *parn->multiplier);
tr.erase(parn);
trace_start="";
}
}
}
else trace_start=*(*dums1)->name;
++dums1;
++dums2;
}
//std::cerr << it << std::endl;
// prodflatten pf(tr, tr.end());
// pf.apply_recursive(it, false);
cleanup_dispatch(kernel, tr, it);
return result_t::l_applied;
}
|