1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
#include "algorithms/decompose.hh"
#include "algorithms/collect_terms.hh"
#include "algorithms/rename_dummies.hh"
#include "algorithms/young_project_product.hh"
#include "properties/TableauBase.hh"
#include "Linear.hh"
using namespace cadabra;
decompose::decompose(const Kernel& k, Ex& tr, Ex& b)
: Algorithm(k, tr), basis(b)
{
}
bool decompose::can_apply(iterator it)
{
if(*it->name!="\\prod") return false;
return true;
}
void decompose::add_element_to_basis(Ex& projterm, Ex::iterator projtermit)
{
// Add a new column for the new term in the basis
for(unsigned int ii=0; ii<coefficient_matrix.size(); ++ii)
coefficient_matrix[ii].push_back(0);
if(*projtermit->name=="\\sum") {
sibling_iterator moreit=projterm.begin(projtermit);
while(moreit!=projterm.end(projtermit)) {
multiplier_t remember_mult=*moreit->multiplier;
one(moreit->multiplier);
bool thistermfound=false;
for(unsigned int ypi=0; ypi<terms_from_yp.size(); ++ypi) {
if(projterm.equal_subtree(terms_from_yp[ypi].begin(), (iterator)moreit)) {
coefficient_matrix[ypi].back()=remember_mult;
thistermfound=true;
break;
}
}
if(!thistermfound) { // new monomial, so add a new row to the coefficient matrix
Ex tmp(moreit);
// tmp.print_recursive_treeform(txtout, tmp.begin());
terms_from_yp.push_back(tmp);
std::vector<multiplier_t> crow(coefficient_matrix.size()>0?
coefficient_matrix[0].size():1,0);
crow.back()=remember_mult;
coefficient_matrix.push_back(crow);
// txtout << "added new monomial" << std::endl;
}
++moreit;
}
}
else {
multiplier_t remember_mult=*projtermit->multiplier;
one(projtermit->multiplier);
bool thistermfound=false;
for(unsigned int ypi=0; ypi<terms_from_yp.size(); ++ypi) {
if(projterm.equal_subtree(terms_from_yp[ypi].begin(), projtermit)) {
coefficient_matrix[ypi].back()=remember_mult;
thistermfound=true;
break;
}
}
if(!thistermfound) { // new monomial, so add a new row to the coefficient matrix
Ex tmp(projtermit);
terms_from_yp.push_back(tmp);
std::vector<multiplier_t> crow(coefficient_matrix.size()>0?
coefficient_matrix[0].size():1,0);
crow.back()=remember_mult;
coefficient_matrix.push_back(crow);
}
}
}
Algorithm::result_t decompose::apply(iterator& it)
{
bool ypproject=true;
#ifdef DEBUG
std::cerr << "Projecting on basis " << basis.begin() << std::endl;
#endif
iterator basisit=basis.begin();
if(! (*basisit->name=="\\comma")) {
sibling_iterator fr=basis.begin();
sibling_iterator nd=fr;
++nd;
// basis should be a list; write it as such even if there's only one element.
basisit->fl.bracket=str_node::b_none;
basisit=tr.wrap(basisit, str_node("\\comma"));
}
Ex projbasis;
projbasis.set_head(str_node("\\expression"));
terms_from_yp.clear();
coefficient_matrix.clear();
// Some overlap with code in all_contractions.
bool nontrivial_symmetries_present=false;
sibling_iterator factorit=tr.begin(it);
while(factorit!=tr.end(it)) { // Do this always, even if ypproject==false, since we need it for rhs.
if(tr.number_of_children(factorit)>1) {
const TableauBase *tb = kernel.properties.get<TableauBase>(factorit);
if(tb)
if(!tb->is_simple_symmetry(kernel.properties, tr, it)) {
nontrivial_symmetries_present=true;
break;
}
}
++factorit;
}
// Setup the coefficient matrix.
if(nontrivial_symmetries_present && ypproject) {
//debugout << "Going to project the basis." << std::endl;
// Need to make a Young-projected basis.
sibling_iterator sib=tr.begin(basisit);
while(sib!=tr.end(basisit)) {
// debugout << "Next term in the basis." << std::endl;
Ex projterm;
projterm.set_head(str_node("\\expression"));
projterm.append_child(projterm.begin(), (iterator)(sib));
#ifdef OLDVERSION
young_project_tensor ypt(projterm, projterm.end());
ypt.modulo_monoterm=true;
iterator projtermit=projterm.begin(projterm.begin());
ypt.apply_generic(projtermit, true, false, 0);
distribute dbt(kernel, projterm);
canonicalise can(kernel, projterm);
// can.method=canonicalise::xperm;
rename_dummies ren(kernel, projterm);
collect_terms ct(kernel, projterm);
dbt.apply_generic(projtermit, false);// FIXME: URGENT: should check consistency
ren.apply_recursive(projtermit, false); // by far the slowest step
if(*projtermit->name=="\\sum")
ct.apply(projtermit);
can.apply_recursive(projtermit, false);
ren.apply_recursive(projtermit, false);
if(*projtermit->name=="\\sum")
ct.apply(projtermit);
#else
iterator projtermit=projterm.begin(projterm.begin());
young_project_product ypp(kernel, projterm);
// sumflatten sf(kernel, projterm);
collect_terms ct(kernel, projterm);
rename_dummies ren(kernel, projterm, "", "");
ypp.apply_generic(projtermit, true, false, 0);
// sf.apply_recursive(projtermit, false);
ren.apply_generic(projtermit, true, false, 0); // by far the slowest step
if(*projtermit->name=="\\sum")
ct.apply(projtermit);
sibling_iterator sib2=tr.begin(projtermit);
while(sib2!=tr.end(projtermit)) {
sib2->fl.bracket=str_node::b_none;
++sib2;
}
#endif
// After young projection, we may get identically zero.
if(projtermit->is_zero()) {
// txtout << "An element of the basis is identically zero after Young projection." << std::endl;
return result_t::l_error;
}
add_element_to_basis(projterm, projtermit);
++sib;
}
// debugout << "Young-projected basis constructed." << std::endl;
}
else {
// Copy the basis straight into the terms_from_yp.
assert(*basisit->name=="\\comma");
sibling_iterator sib=tr.begin(basisit);
while(sib!=tr.end(basisit)) {
Ex projterm(sib);
iterator projtermit=projterm.begin();
sibling_iterator sib2=tr.begin(projtermit);
while(sib2!=tr.end(projtermit)) {
sib2->fl.bracket=str_node::b_none;
++sib2;
}
add_element_to_basis(projterm, projtermit);
++sib;
}
// debugout << "Kept old young-projected basis." << std::endl;
}
// Young project the rhs.
Ex rhstree;
rhstree.set_head(str_node("\\expression"));
rhstree.append_child(rhstree.begin(), it);
iterator rhsit=rhstree.begin(rhstree.begin());
if(nontrivial_symmetries_present) {
#ifdef OLDVERSION
young_project_tensor ypt(rhstree, rhstree.end());
ypt.modulo_monoterm=true;
ypt.apply_generic(rhsit, true, false, 0);
if(*rhsit->name=="\\prod") {
distribute dbt(rhstree, rhstree.end());
canonicalise can(rhstree, rhstree.end());
rename_dummies ren(rhstree, rhstree.end());
collect_terms ct(rhstree, rhstree.end());
dbt.apply(rhsit);
ren.apply_generic(rhsit, true, false, 0);
if(*rhsit->name=="\\sum")
ct.apply(rhsit);
can.apply_generic(rhsit, true, false, 0);
ren.apply_generic(rhsit, true, false, 0);
if(*rhsit->name=="\\sum")
ct.apply(rhsit);
}
#else
young_project_product ypp(kernel, rhstree);
// sumflatten sf(rhstree, rhstree.end());
collect_terms ct(kernel, rhstree);
rename_dummies ren(kernel, rhstree, "", "");
// debugout << "young project rhs." << std::endl;
ypp.apply_generic(rhsit, true, false, 0);
// debugout << "sumflatten." << std::endl;
// sf.apply_recursive(rhsit, false);
// debugout << "rename." << std::endl;
ren.apply_generic(rhsit, true, false, 0); // by far the slowest step
// debugout << "collect terms." << std::endl;
ct.apply_generic(rhsit, true, false, 0);
// debugout << "rhs projection done." << std::endl;
sibling_iterator sib2=rhstree.begin(rhsit);
while(sib2!=rhstree.end(rhsit)) {
sib2->fl.bracket=str_node::b_none;
++sib2;
}
#endif
}
// debugout << "Young-projected rhs constructed" << std::endl;
// rhstree.print_recursive_treeform(debugout, rhstree.begin());
std::vector<multiplier_t> rhs(terms_from_yp.size(),0);
if(*rhsit->name=="\\sum") {
// iterate over all terms
sibling_iterator rhssumit=rhstree.begin(rhsit);
while(rhssumit!=rhstree.end(rhsit)) {
bool found_in_basis=false;
multiplier_t rhsmult=*rhssumit->multiplier;
one(rhssumit->multiplier);
for(unsigned int i=0; i<terms_from_yp.size(); ++i) {
if(tr.equal_subtree(terms_from_yp[i].begin(), (iterator)(rhssumit))) {
rhs[i]=rhsmult;
found_in_basis=true;
break;
}
}
if(!found_in_basis) {
// txtout << "rhs contains a term not present in the basis" << std::endl;
return result_t::l_error;
}
++rhssumit;
}
}
else {
// only one term in the rhs
if(rhsit->is_zero()==false) {
bool found_in_basis=false;
multiplier_t rhsmult=*rhsit->multiplier;
one(rhsit->multiplier);
for(unsigned int i=0; i<terms_from_yp.size(); ++i) {
if(tr.equal_subtree(terms_from_yp[i].begin(), rhsit)) {
rhs[i]=rhsmult;
found_in_basis=true;
break;
}
}
if(!found_in_basis) {
// txtout << "rhs contains a term not present in the basis" << std::endl;
return result_t::l_error;
}
}
}
// debugout << "linear problem constructed" << std::endl;
// for(unsigned int i=0; i<coefficient_matrix.size(); ++i) {
// for(unsigned int j=0; j<coefficient_matrix[i].size(); ++j)
// debugout << coefficient_matrix[i][j] << " ";
// debugout << " " << rhs[i] << std::endl;
// }
// Now decompose
if(rhsit->is_zero()) {
// debugout << "rhs is identically zero" << std::endl;
Ex res;
res.set_head(str_node("\\comma"));
for(unsigned int i=0; i<coefficient_matrix[0].size(); ++i)
res.append_child(res.begin(), str_node("1"))->multiplier=rat_set.insert(0).first;
tr.replace(it, res.begin());
}
else {
// debugout << "doing gaussian elimination" << std::endl;
if(linear::gaussian_elimination_inplace(coefficient_matrix, rhs)) {
// for(unsigned int i=0; i<coefficient_matrix.size(); ++i) {
// for(unsigned int j=0; j<coefficient_matrix[i].size(); ++j)
// debugout << coefficient_matrix[i][j] << " ";
// debugout << " = " << rhs[i] << std::endl;
// }
Ex res;
res.set_head(str_node("\\comma"));
for(unsigned int i=0; i<coefficient_matrix[0].size(); ++i)
res.append_child(res.begin(), str_node("1"))->multiplier=rat_set.insert(rhs[i]).first;
it=tr.replace(it, res.begin());
}
else {
// txtout << "decomposing impossible" << std::endl;
// tr.print_recursive_treeform(txtout, it);
return result_t::l_error;
}
}
return result_t::l_applied;
}
|