1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
#include "Cleanup.hh"
#include "IndexIterator.hh"
#include "Exceptions.hh"
#include "algorithms/decompose_product.hh"
#include "properties/Integer.hh"
using namespace cadabra;
decompose_product::decompose_product(const Kernel& k, Ex&tr)
: Algorithm(k, tr), t1(0), t2(0)
{
}
const Indices *decompose_product::indices_equivalent(iterator it) const
{
index_iterator ii=index_iterator::begin(kernel.properties, it);
const Indices *ret=0, *tmp=0;
while(ii!=index_iterator::end(kernel.properties, it)) {
tmp=kernel.properties.get<Indices>(ii, true);
if(tmp==0) return 0;
if(ret==0) ret=tmp;
else if(ret!=tmp) return 0;
++ii;
}
return ret;
}
bool decompose_product::can_apply(iterator it)
{
// Act on products. Find the first object which either has a
// TableauSymmetry or has one vector index only. Then find the next
// indexed object in the product and return true if this is a
// one-indexed or TableauSymmetry object, and if the index types
// of all indices match.
if(*it->name=="\\prod") {
sibling_iterator fc=tr.begin(it);
while(fc!=tr.end(it)) {
t1=kernel.properties.get<TableauBase>(fc);
if(t1 || number_of_indices(kernel.properties, fc)==1) {
f1=fc;
ind1=indices_equivalent(fc);
if(ind1) {
++fc;
if(fc!=tr.end(it)) {
t2=kernel.properties.get<TableauBase>(fc);
if(t2 || number_of_indices(kernel.properties, fc)==1) {
f2=fc;
ind2=indices_equivalent(fc);
if(ind2 && ind1==ind2) {
// Strip off the parent rel because Integer properties are
// declared as {m,n,p}::Integer, not {_m, _n, _p}::Integer.
Ex index(index_iterator::begin(kernel.properties, fc));
index.begin()->fl.parent_rel=str_node::p_none;
const Integer *itg=
kernel.properties.get<Integer>( index.begin(), true );
if(itg) {
dim=to_long(*itg->difference.begin()->multiplier);
if(dim>0)
return true;
}
}
}
}
}
}
++fc;
}
}
return false;
}
void decompose_product::fill_asym_ranges(TableauBase::tab_t& tab, int offset,
combin::range_vector_t& ranges)
{
// FIXME: we could also look at all other factors, and see if the index
// _name_ in the slot is contracted to the index name in an antisymmetric
// slot range. But that is more tricky, because index names move, whereas
// slots stay.
for(unsigned int i=0; i<tab.row_size(0); ++i) {
TableauBase::tab_t::in_column_iterator ci=tab.begin_column(i);
combin::range_t tmprange;
while(ci!=tab.end_column(i)) {
tmprange.push_back((*ci)+offset);
++ci;
}
if(tmprange.size()>=2)
ranges.push_back(tmprange);
}
}
Algorithm::result_t decompose_product::apply(iterator& it)
{
// Create the tensor product Young tableaux.
sibtab_t m1,m2;
sibtabs_t prod;
numtabs_t numprod;
unsigned int ioffset1=0, ioffset2=0;
if(t1) {
if(t1->size(kernel.properties, tr, f1)>1)
throw ConsistencyException("decompose_product: cannot handle multiple tableau tensors");
t1tab=t1->get_tab(kernel.properties, tr, f1, 0);
for(unsigned int r=0; r<t1tab.number_of_rows(); ++r)
for(unsigned int c=0; c<t1tab.row_size(r); ++c) {
index_iterator tmpii=index_iterator::begin(kernel.properties, f1);
tmpii+=t1tab(r,c);
m1.add_box(r, tmpii);
}
}
else m1.add_box(0, index_iterator::begin(kernel.properties, f1));
if(t2) {
if(t2->size(kernel.properties, tr, f2)>1)
throw ConsistencyException("decompose_product: cannot handle multiple tableau tensors");
t2tab=t2->get_tab(kernel.properties, tr, f2, 0);
for(unsigned int r=0; r<t2tab.number_of_rows(); ++r)
for(unsigned int c=0; c<t2tab.row_size(r); ++c) {
index_iterator tmpii=index_iterator::begin(kernel.properties, f2);
tmpii+=t2tab(r,c);
m2.add_box(r, tmpii);
}
}
else m2.add_box(0, index_iterator::begin(kernel.properties, f2));
// Determine the position of the first index of the two
// factors relative to the product (not to the tensors themselves).
index_iterator srch=index_iterator::begin(kernel.properties, it);
while(srch!=index_iterator::end(kernel.properties, it)) {
if(iterator(srch)==iterator(index_iterator::begin(kernel.properties, f1)))
break;
++ioffset1;
++srch;
}
srch=index_iterator::begin(kernel.properties, it);
while(srch!=index_iterator::end(kernel.properties, it)) {
if(iterator(srch)==iterator(index_iterator::begin(kernel.properties, f2)))
break;
++ioffset2;
++srch;
}
// Determine slot ranges which are anti-symmetric.
asym_ranges.clear();
if(t1) fill_asym_ranges(t1tab, ioffset1, asym_ranges);
if(t2) fill_asym_ranges(t2tab, ioffset2, asym_ranges);
// Make the tensor product tableaux.
yngtab::LR_tensor(m1, m2, dim, prod.get_back_insert_iterator(), true);
//std::cerr << "dim=" << dim << ", size=" << prod.storage.size() << std::endl;
// The tableaux in 'prod' contain in their boxes iterators to
// the indices in the original expression. We convert these to
// numerical positions so they can be applied to copies of the
// expression as well.
sibtabs_t::tableau_container_t::iterator tt=prod.storage.begin();
while(tt!=prod.storage.end()) {
numtab_t tmptab;
tmptab.copy_shape(*tt);
sibtab_t::iterator si=tt->begin();
numtab_t::iterator ni=tmptab.begin();
while(si!=tt->end()) {
index_iterator fnd=index_iterator::begin(kernel.properties, it);
unsigned int inum=0;
while(fnd!=index_iterator::end(kernel.properties, it)) {
if(iterator(fnd) == (*si)) {
*ni=inum;
break;
}
++inum;
++fnd;
}
assert(inum!=number_of_indices(kernel.properties, it));
++ni;
++si;
}
numprod.storage.push_back(tmptab);
++tt;
}
// Now create a Young projector sum of terms with the indices
// distributed according to the tensor product tableaux.
// std::cout << numprod << std::endl;
Ex rep;
rep.set_head(str_node("\\tmp")); // not \sum to prevent auto flattening
numtabs_t::tableau_container_t::iterator ntt=numprod.storage.begin();
while(ntt!=numprod.storage.end()) {
// TESTINGONLY
/// ++ntt; ++ntt; ++ntt;
// txtout << "another tableau" << std::endl;
young_project yp(kernel, tr);
yp.tab=(*ntt);
// if(getenv("SMART"))
yp.asym_ranges=asym_ranges;
// The asym ranges contain ranges of index locations. What we need
// to convert this to is box numbers. This is a value->location
// conversion in combinatorics.hh language. This will be done
// inside the youngtab.hh routines.
// Apply the product projector.
iterator rr=rep.append_child(rep.begin(), it);
auto res=yp.can_apply(rr);
assert(res);
yp.apply(rr);
// We cannot use any algorithms which re-order indices, as the
// order in yp.sym must match the order in the expression. Also,
// we cannot remove terms without removing the corresponding entries
// in yp.sym. So for the time being we have decided to put this
// simplification in young_project.
// Now apply the symmetries of the original tableaux (if any).
// For each of the permutations in the product projector,
// we need to figure out where the indices went which sat on
// tensor 1 and 2. This information is stored in the symmetriser
// of young_project. These indices then have to be projected using
// the tensor projectors.
// TESTINGONLY
// txtout << "one ..." << std::flush;
if(t1) project_onto_initial_symmetries(rep, rr, yp, t1, f1, ioffset1, t1tab, false);
// txtout << "done" << std::endl;
// txtout << "two ..." << std::flush;
if(t2) project_onto_initial_symmetries(rep, rr, yp, t2, f2, ioffset2, t2tab, true);
// txtout << "done" << std::endl;
// TESTINGONLY
/// break;
++ntt;
}
rep.begin()->name=name_set.insert("\\sum").first;
it=tr.replace(it, rep.begin());
// flatten sums
// txtout << "flattening... " << std::flush;
// sumflatten sf(tr, tr.end());
// sf.apply_recursive(it, false);
// txtout << "done" << std::endl;
// tr.print_recursive_treeform(std::cout, it);
cleanup_dispatch(kernel, tr, it);
return result_t::l_applied;
}
void decompose_product::project_onto_initial_symmetries(Ex& rep, iterator rr, young_project& yp,
const TableauBase *, iterator ff,
int ioffset, const TableauBase::tab_t& thetab,
bool remove_traces)
{
// Sample: S_{m n} D_{p}{ A_{n q} } with S symmetric and A antisymmetric.
// The tensor product contains one tableau which leads to a symmetriser
// with as first entry 0 3 2 1 4. This means that the 'm' and 'n' index
// names are associated, in the original, to box 0 and 3 respectively.
// Now one of the terms in this symmetriser reads 2 4 0 1 3. In order
// to apply the individual tensor projectors, we read off that the
// 'm' and 'n' indices have now been moved to slot 2 and 1 respectively.
// So we create a [1 1] tableau with numbers 2 and 1 in the boxes,
// and apply this tensor projector to the full product tensor.
unsigned int termnum=0;
// Run through all terms in this tableau of the tensor product.
sibling_iterator term=rep.begin(rr);
while(term!=rep.end(rr)) {
// Setup the tableau for initial-tensor projection.
young_project ypinitial(kernel, tr);
ypinitial.tab.copy_shape(thetab);
numtab_t::iterator tabit=ypinitial.tab.begin();
numtab_t::const_iterator origtabit=thetab.begin();
sibling_iterator nxt=term;
++nxt;
index_iterator ii=index_iterator::begin(kernel.properties, ff);
while(ii!=index_iterator::end(kernel.properties, ff)) {
unsigned int ipos=ioffset + (*origtabit);
assert(termnum<yp.sym.size());
// Find ipos in the first entry of yp.sym
// and store the new position in the tableau.
for(unsigned int i=0; i<yp.sym[termnum].size(); ++i) {
if(yp.sym[termnum][i]==ipos) {
*tabit=yp.sym[0][i];
// txtout << ipos << " has moved to " << yp.sym[0][i] << std::endl;
break;
}
}
++tabit;
++origtabit;
++ii;
}
// Now we can finally project.
yp.remove_traces=remove_traces;
if(*term->name=="\\sum") { // apply to all terms in the sum
// THIS IS NOT CORRECT?! If we turn on asym_ranges here
// the result breaks.
// if(getenv("SMART"))
// ypinitial.asym_ranges=asym_ranges;
sibling_iterator trmit=tr.begin(term);
while(trmit!=tr.end(term)) {
iterator tmp=trmit;
sibling_iterator nxt2=trmit;
++nxt2;
// Now apply the projector.
auto res=ypinitial.can_apply(tmp);
assert(res);
ypinitial.apply(tmp);
trmit=nxt2;
}
}
else { // just a single term
// if(getenv("SMART"))
ypinitial.asym_ranges=asym_ranges;
iterator tmp=term;
[[maybe_unused]] auto res=ypinitial.can_apply(tmp);
assert(res);
ypinitial.apply(tmp);
}
++termnum;
term=nxt;
}
}
|