1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
|
#include "Functional.hh"
#include "Cleanup.hh"
#include "Permutations.hh"
#include "MultiIndex.hh"
//#include "SympyCdb.hh"
#include "algorithms/evaluate.hh"
#include "algorithms/simplify.hh"
#include "algorithms/substitute.hh"
#include "properties/EpsilonTensor.hh"
#include "properties/PartialDerivative.hh"
#include "properties/Coordinate.hh"
#include "properties/Depends.hh"
#include "properties/Accent.hh"
#include <functional>
// #define DEBUG 1
using namespace cadabra;
evaluate::evaluate(const Kernel& k, Ex& tr, const Ex& c, bool rhs, bool simplify)
: Algorithm(k, tr), components(c), only_rhs(rhs), call_sympy(simplify)
{
}
bool evaluate::can_apply(iterator it)
{
return tr.is_head(it); // only act at top level, we descend ourselves
}
bool evaluate::is_scalar_function(iterator it) const
{
if(*it->name=="\\pow" || *it->name=="\\exp" || *it->name=="\\sin" || *it->name=="\\cos" ) return true;
return false;
}
Algorithm::result_t evaluate::apply(iterator& it)
{
result_t res=result_t::l_no_action;
// The first pass is top-down.
// The second pass is bottom-up. The general logic of the routines
// this calls is that, instead of looping over all possible index
// value sets, we look straight at the substitution rules, and
// check that these are required for some index values (this is
// where symmetry arguments should come in as well).
//
// The logic in Compare.cc helps us by matching component A_{t r}
// in the rule to an abstract tensor A_{m n} in the expression, storing
// the index name -> index value map.
it = cadabra::do_subtree(tr, it, [&](Ex::iterator walk) -> Ex::iterator {
#ifdef DEBUG
std::cerr << "evaluate at " << walk << std::endl;
#endif
if(*(walk->name)=="\\components") walk = handle_components(walk);
// FIXME: currently \pow is the only function for which we go straight up without
// evaluating. For this reason, its children do not get wrapped in a \components node
// in handle_factor. This needs to be extended to other function as well.
else if(is_scalar_function(walk))
{
unwrap_scalar_in_components_node(walk); // this is a scalar
return walk;
}
else if(is_component(walk)) return walk;
else if(*(walk->name)=="\\sum") walk = handle_sum(walk);
else if(*(walk->name)=="\\prod" || *(walk->name)=="\\wedge" || *(walk->name)=="\\frac")
walk = handle_prod(walk);
else
{
const PartialDerivative *pd = kernel.properties.get<PartialDerivative>(walk);
if(pd) walk = handle_derivative(walk);
else {
const EpsilonTensor *eps = kernel.properties.get<EpsilonTensor>(walk);
if(eps) {
walk = handle_epsilon(walk);
}
else if(*walk->name!="\\equals" && walk->is_index()==false) {
if(! (only_rhs && tr.is_head(walk)==false && ( *(tr.parent(walk)->name)=="\\equals" || *(tr.parent(walk)->name)=="\\arrow" ) && tr.index(walk)==0) ) {
index_map_t empty;
sibling_iterator tmp(walk);
#ifdef DEBUG
std::cerr << "handling factor" << std::endl;
std::cerr << *walk->name << std::endl;
#endif
walk = handle_factor(tmp, empty);
// std::cerr << "handling factor done" << std::endl;
}
}
}
}
return walk;
}
);
// Final cleanup, e.g. to reduce scalar expressions to proper
// scalars instead of 'components' nodes.
cleanup_dispatch_deep(kernel, tr);
return res;
}
bool evaluate::is_component(iterator it) const
{
// FIXME: The fact that this is called in the main loop above
// prevents any evaluation of tensorial expressions which appear
// inside components. Such things could in principle appear if, in
// an existing components node, a scalar was replaced with an
// object built from a tensor.
while(true) {
if(*it->name=="\\components") {
return true;
}
if(tr.is_head(it)==false)
it=tr.parent(it);
else
break;
}
return false;
}
Ex::iterator evaluate::handle_components(iterator it)
{
// This just cleans up component nodes. At the moment this means
// taking care of handling dummy pairs.
index_map_t ind_free, ind_dummy;
classify_indices(it, ind_free, ind_dummy);
if(ind_dummy.size()==0) return it;
// Wrap in a product, use handle_prod to sort out summation.
it = tr.wrap(it, str_node("\\prod"));
it = handle_prod(it);
return it;
}
Ex::iterator evaluate::handle_sum(iterator it)
{
// std::cerr << "handle sum" << Ex(it) << std::endl;
// pre-scan: remove zero nodes from evaluate having processed
// nodes at lower level, and ensure child nodes are \component
// nodes.
sibling_iterator sib=tr.begin(it);
while(sib!=tr.end(it)) {
sibling_iterator nxt=sib;
++nxt;
if(*sib->multiplier==0) { // zero terms can be removed
tr.erase(sib);
}
else if(is_component(sib)==false) {
index_map_t empty;
handle_factor(sib, empty);
}
sib=nxt;
}
if(tr.number_of_children(it)==0) {
node_zero(it);
return it;
}
index_map_t full_ind_free, full_ind_dummy;
// First find the values that all indices will need to take. We do not loop over
// them, but we need them in order to figure out which patterns in the rule can
// match to patterns in the expression.
classify_indices(it, full_ind_free, full_ind_dummy);
for(auto i: full_ind_free) {
// std::cerr << "finding prop for " << Ex(i.second) << std::endl;
const Indices *prop = kernel.properties.get<Indices>(i.second);
if(prop==0) {
const Coordinate *crd = kernel.properties.get<Coordinate>(i.second, true);
if(crd==0)
throw ArgumentException("evaluate: Index "+*(i.second->name)
+" does not have an Indices property.");
}
if(prop!=0 && prop->values.size()==0)
throw ArgumentException("evaluate: Do not know values of index "+*(i.second->name)+".");
}
// Iterate over all terms in the sum. These should be of two types: \component nodes,
// which we do not need to touch anymore, and nodes which have still not been
// evaluated. We send them all to handle_factor, which will return immediately on the
// first node type, and convert the second type to the first.
sib=tr.begin(it);
while(sib!=tr.end(it)) {
sibling_iterator nxt=sib;
++nxt;
if(sib->is_zero())
sib=tr.erase(sib);
else {
handle_factor(sib, full_ind_free);
sib=nxt;
}
}
// Now all terms in the sum (which has its top node at 'it') are
// \component nodes. We need to merge these together into a single
// node.
auto sib1=tr.begin(it);
// merge_component_children(sib1);
auto sib2=sib1;
++sib2;
while(sib2!=tr.end(it)) {
#ifdef DEBUG
std::cerr << "merging components " << Ex(sib1) << " and " << Ex(sib2) << std::endl;
#endif
merge_components(sib1, sib2);
sib2=tr.erase(sib2);
}
cleanup_components(sib1);
it=tr.flatten_and_erase(it);
return it;
}
Ex::iterator evaluate::handle_factor(sibling_iterator sib, const index_map_t& full_ind_free)
{
#ifdef DEBUG
std::cerr << "handle_factor " << Ex(sib) << std::endl;
#endif
if(*sib->name=="\\components") return sib;
// If this factor is an accent at the top level, descent further.
const Accent *acc = kernel.properties.get<Accent>(sib);
if(acc) {
auto deeper=tr.begin(sib);
handle_factor(deeper, full_ind_free);
// Put the accent on each of the components.
sibling_iterator cl = tr.end(deeper);
--cl;
cadabra::do_list(tr, cl, [&](Ex::iterator c) {
auto towrap = tr.child(c, 1);
tr.wrap(towrap, *sib);
return true;
});
//tr.print_recursive_treeform(std::cerr, sib);
// Move the component node up, outside the accent.
sib=tr.flatten(sib);
sib=tr.erase(sib);
//tr.print_recursive_treeform(std::cerr, sib);
return sib;
}
// We need to know for all indices whether they are free or dummy,
// in particular to handle internal contractions correctly.
index_map_t ind_free, ind_dummy;
classify_indices(sib, ind_free, ind_dummy);
// Pure scalar nodes need to be wrapped in a \component node to make life
// easier for the rest of the algorithm.
if(ind_free.size()==0 && ind_dummy.size()==0) {
if(!tr.is_head(sib) && *tr.parent(sib)->name!="\\pow") {
sib=wrap_scalar_in_components_node(sib);
#ifdef DEBUG
std::cerr << "wrapped scalar" << std::endl;
#endif
}
return sib;
}
// If the indices are all Coordinates, this is a scalar, not a tensor.
// It then needs simple wrapping just like a 'proper' scalar handed above.
if(ind_dummy.size()==0 && ind_free.size()!=0) {
bool all_coordinates=true;
for(auto& ind: ind_free) {
const Coordinate *crd = kernel.properties.get<Coordinate>(ind.second, true);
if(!crd) {
all_coordinates=false;
break;
}
}
if(all_coordinates) {
if(!tr.is_head(sib) && *tr.parent(sib)->name!="\\pow") {
sib=wrap_scalar_in_components_node(sib);
#ifdef DEBUG
std::cerr << "wrapped scalar with component derivatives" << std::endl;
#endif
}
return sib;
}
}
// Attempt to apply each component substitution rule on this term.
Ex repl("\\components");
for(auto& ind: ind_free)
repl.append_child(repl.begin(), ind.second);
// If there are no free indices, add an empty first child anyway,
// otherwise we need special cases in various other places.
auto vl = repl.append_child(repl.begin(), str_node("\\comma"));
bool has_acted=false;
cadabra::do_list(components, components.begin(), [&](Ex::iterator c) {
Ex rule(c);
Ex obj(sib);
// std::cerr << "attempting rule " << rule << " on " << obj << std::endl;
// rule is a single rule, we walk the list.
substitute subs(kernel, obj, rule);
subs.comparator.set_value_matches_index(true);
iterator oit=obj.begin();
if(subs.can_apply(oit)) {
has_acted=true;
// std::cerr << "can apply" << std::endl;
auto el = repl.append_child(vl, str_node("\\equals"));
auto il = repl.append_child(el, str_node("\\comma"));
auto fi = full_ind_free.begin();
// FIXME: need to do something sensible with indices on the lhs
// of rules which are not coordinates. You can have A_{m n} as expression,
// A_{0 0} -> r, A_{i j} -> \delta_{i j} as rule, but at the moment the
// second rule does not do the right thing.
// Store all free indices (not the dummies!) in the component node.
// If we have been passed an empty list of free indices (because the parent
// node is not a sum node), simply add all free index values in turn.
if(fi==full_ind_free.end()) {
// for(auto& r: subs.comparator.index_value_map) {
// repl.append_child(il, r.second.begin())->fl.parent_rel=str_node::p_none;
// }
fi=ind_free.begin();
while(fi!=ind_free.end()) {
for(auto& r: subs.comparator.index_value_map) {
if(fi->first == r.first) {
// std::cerr << "adding " << r.second.begin() << std::endl;
repl.append_child(il, r.second.begin())->fl.parent_rel=str_node::p_none;
break;
}
}
auto fiold(fi);
while(fi!=ind_free.end() && fiold->first==fi->first)
++fi;
}
}
else {
while(fi!=full_ind_free.end()) {
for(auto& r: subs.comparator.index_value_map) {
if(fi->first == r.first) {
repl.append_child(il, r.second.begin())->fl.parent_rel=str_node::p_none;
break;
}
}
auto fiold(fi);
while(fi!=full_ind_free.end() && fiold->first==fi->first)
++fi;
}
}
subs.apply(oit);
repl.append_child(el, obj.begin());
return true; // Cannot yet abort the do_list loop.
}
else {
// TRACE: There is no rule which matches this factor. This means that
// we want to keep all components?
}
return true;
});
if(!has_acted) {
// There was not a single rule which matched for this tensor. That's means
// that the user wants to keep the entire tensor (all components).
#ifdef DEBUG
std::cerr << "No single rule matched " << Ex(sib) << std::endl;
#endif
sib=dense_factor(sib, ind_free, ind_dummy);
}
else {
merge_component_children(repl.begin());
#ifdef DEBUG
std::cerr << "result now " << repl << std::endl;
#endif
sib = tr.move_ontop(iterator(sib), repl.begin());
}
return sib;
}
Ex::iterator evaluate::dense_factor(iterator it, const index_map_t& ind_free, const index_map_t& ind_dummy)
{
if(ind_dummy.size()!=0)
throw RuntimeException("Cannot yet evaluate this expression.");
// For each index we need to iterate over all possible values, and generate a
// components node for it. This should be done 'on the fly' eventually, the way
// python treats 'map', but that will require wrapping all access to
// '\components' in a separate class.
index_position_map_t ind_pos_free;
fill_index_position_map(it, ind_free, ind_pos_free);
Ex comp("\\components");
auto fi = ind_free.begin();
//std::cerr << "dense factor with indices: ";
MultiIndex<Ex> mi;
while(fi!=ind_free.end()) {
comp.append_child(comp.begin(), fi->first.begin());
// Look up which values this index takes.
auto *id = kernel.properties.get<Indices>(fi->second);
std::vector<Ex> values;
if(!id || id->values.size()==0) {
// No index property known, or not known which values the index
// takes, so keep this index unexpanded.
auto val=Ex(fi->second);
val.begin()->fl.parent_rel=str_node::parent_rel_t::p_none;
values.push_back(val);
}
else {
for(const auto& ex: id->values)
values.push_back(ex);
}
mi.values.push_back(values);
++fi;
}
auto comma=comp.append_child(comp.begin(), str_node("\\comma"));
// For each set of index values...
for(mi.start(); !mi.end(); ++mi) {
auto ivs = comp.append_child(comma, str_node("\\equals"));
auto ivsc = comp.append_child(ivs, str_node("\\comma"));
// ... add the values of the indices.
for(std::size_t i=0; i<mi.values.size(); ++i) {
comp.append_child(ivsc, mi[i].begin());
}
// ... then set the value of the tensor component.
auto repfac = comp.append_child(ivs, it);
fi = ind_free.begin();
size_t i=0;
while(fi!=ind_free.end()) {
auto il = begin_index(repfac);
auto num = ind_pos_free[fi->second];
il += num;
auto ii = iterator(il);
auto parent_rel = il->fl.parent_rel;
comp.replace(ii, mi[i].begin())->fl.parent_rel=parent_rel;
++fi;
++i;
}
}
#ifdef DEBUG
std::cerr << Ex(it) << std::endl;
#endif
it=tr.move_ontop(it, comp.begin());
return it;
}
void evaluate::merge_component_children(iterator it)
{
// Scan the entries of a single \components node for those
// which carry the same index value for the free indices.
// Such things can arise from e.g. A_{m} A_{m n} and the
// rule { A_{r}=3, A_{t}=5, A_{r t}=1, A_{t t}=2 }, which
// leads to two entries for the free index n=t.
// if(*it->name!="\\components")
// std::cerr << "*** " << *it->name << std::endl;
assert(*it->name=="\\components");
auto comma=tr.end(it);
--comma;
// if(*comma->name!="\\comma")
// std::cerr << "*** " << *comma->name << std::endl;
assert(*comma->name=="\\comma");
auto cv1=tr.begin(comma); // equals node
while(cv1!=tr.end(comma)) {
auto iv1=tr.begin(cv1); // index values \comma
auto cv2=cv1;
++cv2;
while(cv2!=tr.end(comma)) {
auto iv2=tr.begin(cv2); // index values \comma
if(tr.equal_subtree(iv1, iv2)) {
// std::cerr << "merging " << Ex(iv1) << std::endl;
Ex::sibling_iterator tv1=iv1; // tensor component value
++tv1;
Ex::sibling_iterator tv2=iv2;
++tv2;
// std::cerr << "need to merge" << std::endl;
if(*tv1->name!="\\sum")
tv1=tr.wrap(tv1, str_node("\\sum"));
tr.append_child(tv1, tv2);
cv2=tr.erase(cv2);
}
else ++cv2;
}
++cv1;
}
}
void evaluate::merge_components(iterator it1, iterator it2)
{
// Merge two component nodes which come from two terms in a sum (so that
// we can be assured that the free indices match; they just may not be
// in the same order).
#ifdef DEBUG
std::cerr << "merge_components on " << Ex(it1) << " and " << Ex(it2) << std::endl;
#endif
assert(*it1->name=="\\components");
assert(*it2->name=="\\components");
sibling_iterator sib1=tr.end(it1);
--sib1;
sibling_iterator sib2=tr.end(it2);
--sib2;
assert(*sib1->name=="\\comma");
assert(*sib2->name=="\\comma");
// We cannot directly compare the lhs of the equals nodes of it1
// with the lhs of the equals node of it2, because the index order
// on the two components nodes may be different. We first have to
// ensure that the orders are the same (but only, of course) if we
// have anything to permutate in the first place.
if(*tr.begin(it1)->name!="\\comma") {
// Look at all indices on the two components nodes. Find
// the permutation that takes the indices on it2 and brings
// them in the order as they are on it1.
Perm perm;
perm.find(tr.begin(it2), sib2, tr.begin(it1), sib1);
// For each \equals node in the it2 comma node, permute
// the values so they agree with the index order on it1.
cadabra::do_list(tr, sib2, [&](Ex::iterator nd) {
// nd is an \equals node.
assert(*nd->name=="\\equals");
auto comma = tr.begin(nd);
assert(*comma->name=="\\comma");
perm.apply(tr.begin(comma), tr.end(comma));
return true;
});
#ifdef DEBUG
std::cerr << "permutations done" << std::endl;
#endif
}
// Now all index orders match and we can simply compare index value sets.
cadabra::do_list(tr, sib2, [&](Ex::iterator it2) {
assert(*it2->name=="\\equals");
auto lhs2 = tr.begin(it2);
auto found = cadabra::find_in_list(tr, sib1, [&](Ex::iterator it1) {
auto lhs1 = tr.begin(it1);
//std::cerr << "comparing " << *lhs1->name << " with " << *lhs2->name << std::endl;
if(tr.equal_subtree(lhs1, lhs2)) {
auto sum1=lhs1;
++sum1;
auto sum2=lhs2;
++sum2;
if(*sum1->name!="\\sum")
sum1=tr.wrap(sum1, str_node("\\sum"));
tr.append_child(sum1, sum2);
return iterator(sum1);
}
return tr.end();
});
if(found==tr.end()) {
tr.append_child(iterator(sib1), it2);
}
return true;
});
if(call_sympy)
simplify_components(it1);
}
void evaluate::cleanup_components(iterator it)
{
sibling_iterator sib=tr.end(it);
--sib;
cadabra::do_list(tr, sib, [&](Ex::iterator nd) {
auto iv=tr.begin(nd);
++iv;
iterator p=iv;
cleanup_dispatch(kernel, tr, p);
return true;
});
}
Ex::iterator evaluate::handle_derivative(iterator it)
{
#ifdef DEBUG
std::cerr << "handle_derivative " << Ex(it) << std::endl;
#endif
// In order to figure out which components to keep, we need to do two things:
// expand into components the argument of the derivative, and then
// figure out the dependence of that argument on the various coordinates.
// There may be other orders (for e.g. situations where we want to keep entire
// components unevaluated), but that's for later when we have practical use cases.
sibling_iterator sib=tr.begin(it);
while(sib!=tr.end(it)) {
if(sib->is_index()==false) {
if(is_component(sib)==false) {
index_map_t empty;
// This really shouldn't be necessary; the way in which the
// top level 'apply' works, it should have rewritten the argument
// of the derivative into a \components node already.
sib=handle_factor(sib, empty);
}
break;
}
++sib;
}
assert(sib!=tr.end(it));
// std::cerr << "after handle\n" << Ex(it) << std::endl;
index_map_t ind_free, ind_dummy;
classify_indices(it, ind_free, ind_dummy);
// Flag an error if a partial derivative has an upper index which
// is not position=free: this would require converting the index
// with a metric, and that should be done by the user using
// rewrite_indices.
//
// Also flag an error if there is more than one index type (we do
// not handle those cases yet).
auto fu = tr.begin(it);
const Indices *unique_indices=0;
while(fu!=tr.end(it)) {
if(fu->is_index()) {
const Indices *ind = kernel.properties.get<Indices>(fu);
if(ind!=unique_indices) {
if(unique_indices==0)
unique_indices=ind;
else
throw RuntimeException("All indices on a single derivative need to be of the same type.");
}
if(fu->fl.parent_rel==str_node::p_super) {
if(ind && ind->position_type!=Indices::free)
throw RuntimeException("All indices on derivatives need to be lowered first.");
}
}
++fu;
}
// Figure out the positions of the index values in the components
// node inside the derivative which correspond to values of dummy
// indices (these necessarily have the other dummy on the
// derivative itself).
std::vector<std::pair<size_t, size_t>> dummy_positions;
decltype(ind_dummy.begin()) dumit[2];
dumit[0] = ind_dummy.begin();
while(dumit[0]!=ind_dummy.end()) {
dumit[1]=dumit[0];
++dumit[1];
assert(dumit[1]!=ind_dummy.end());
bool on_component[2];
iterator parents[2];
for(int i=0; i<2; ++i) {
parents[i]=tr.parent(dumit[i]->second);
on_component[i]=*parents[i]->name=="\\components";
}
if(on_component[0]==false && on_component[1]==true)
dummy_positions.push_back(std::make_pair(tr.index(dumit[0]->second), tr.index(dumit[1]->second)));
else if(on_component[1]==false && on_component[0]==true)
dummy_positions.push_back(std::make_pair(tr.index(dumit[1]->second), tr.index(dumit[0]->second)));
++dumit[0];
++dumit[0];
}
// Walk all the index value sets of the \components node inside the
// \partial node. For each, determine the dependencies, and
// generate one element for each dependence.
sibling_iterator ivalues = tr.end(sib);
--ivalues;
size_t ni=number_of_direct_indices(it);
cadabra::do_list(tr, ivalues, [&](Ex::iterator iv) {
#ifdef DEBUG
std::cerr << "====" << std::endl;
std::cerr << Ex(iv) << std::endl;
#endif
// For each internal dummy set, keep track of the
// position in the permutation array where we generate
// its value.
std::map<Ex, int, tree_exact_less_for_indexmap_obj> d2p;
Ex_comparator comp(kernel.properties);
sibling_iterator rhs = tr.begin(iv);
++rhs;
auto deps=dependencies(rhs);
if(deps.size()==0) {
// pm->message("No dependencies for " + *rhs->name);
tr.erase(iv);
return true;
}
// If one of the dependencies is '\partial{#}', replace this will all the
// index values that can appear in the derivative.
auto dit = deps.begin();
while(dit!=deps.end()) {
comp.clear();
if(*(dit->begin()->name)=="\\partial") { // FIXME: do a proper full-tree comparison with '\partial{#}'.
// if(comp.equal_subtree("\partial{#}", *dit, Ex_comparator::useprops_t::never, true)==Ex_comparator::match_t::subtree_match) {
deps.erase(dit);
for(const auto& ival: unique_indices->values)
deps.insert(ival);
break;
}
++dit;
}
// If the argument does not depend on anything, all derivatives
// would produce zero. Remove this \equals node from the tree.
if(deps.size()==0) {
pm->message("No relevant dependencies for " + *rhs->name);
tr.erase(iv);
return true;
}
// All indices on \partial can take any of the values of the
// dependencies, EXCEPT when the index is a dummy index OR
// when the index on the partial is a Coordinate. And of course
// we should check that the indices can actually take the
// values of the dependencies.
//
// In the 1st exceptional case, we firstly need to ensure
// that both indices in the dummy pair take the same value
// (this is done with d2p). Secondly, we need to ensure that
// if the second index sits on the argument, we only use the
// value of that index as given in the 'iv' list.
//
// In the 2nd exceptional case, we just need to determine if
// the particular derivative does not annihilate the argument.
// Need all combinations of values, with repetition (multiple
// pick) allowed.
combin::combinations<Ex> cb;
for(auto& obj: deps) {
#ifdef DEBUG
std::cerr << "dep " << obj << std::endl;
#endif
if(unique_indices) {
// std::cerr << "checking that deps are in values" << std::endl;
for(const auto& allowed: unique_indices->values) {
comp.clear();
if(comp.equal_subtree(allowed.begin(), obj.begin(), Ex_comparator::useprops_t::never, true)<=Ex_comparator::match_t::subtree_match) {
cb.original.push_back(obj);
break;
}
}
}
else
cb.original.push_back(obj);
}
if(cb.original.size()==0) {
// We may have had dependencies, but none of the index values can take those
// values. So all is zero.
tr.erase(iv);
return true;
}
cb.multiple_pick=true;
cb.block_length=1;
for(size_t n=0; n<ni; ++n) {
// If this child is a coordinate, take it out of the combinatorics
// of summing over index values (it's a single value).
if(kernel.properties.get<Coordinate>(tr.child(it, n), true)!=0)
continue;
Ex iname(tr.child(it,n)); // FIXME: does not handle Accented objects
if(ind_dummy.find(iname)!=ind_dummy.end()) {
// If this dummy has one leg on the argument of the derivative,
// take it out of the combinatorics, because its value will
// be fixed.
bool out=false;
for(auto& d: dummy_positions)
if(d.first==n) {
out=true;
break;
}
if(out) continue;
if(d2p.find(iname)!=d2p.end())
continue;
else {
d2p[iname]=cb.sublengths.size();
}
}
cb.sublengths.push_back(1);
}
if(cb.sublengths.size()>0) // only if not all indices are fixed
cb.permute();
#ifdef DEBUG
std::cerr << cb.size() << " permutations of indices" << std::endl;
#endif
// Note: indices on partial may be dummies, in which case the
// values cannot be arbitrary. This is a self-contraction,
// but cannot be caught by handle_factor because derivatives
// do not get handled by patterns directly, they get
// constructed by looking at dependencies.
// For each index value set we constructed for the indices on the
// derivative, create an entry in the \components node.
for(unsigned int i=0; i<cb.size() || cb.size()==0; ++i) {
// 'i' runs over all index combinations.
#ifdef DEBUG
std::cerr << "Index combination " << i << std::endl;
#endif
Ex eqcopy(iv);
auto lhs=eqcopy.begin(eqcopy.begin());
assert(*lhs->name=="\\comma");
if(cb.size()>0) {
#ifdef DEBUG
std::cerr << "Copying values of derivative indices" << std::endl;
#endif
// Setup the index values; simply copy from the cb array, but only
// if the indices are not internal dummy.
for(size_t j=0; j<cb[i].size(); ++j) {
auto fd = ind_dummy.find(Ex(tr.child(it, j)));
if(fd==ind_dummy.end()) {
eqcopy.append_child(iterator(lhs), cb[i][j].begin() );
}
}
}
auto rhs=lhs;
++rhs;
multiplier_t mult=*rhs->multiplier;
one(rhs->multiplier);
// Wrap a '\\partial' node around the component value, and add the
// same index values as above to this node.
rhs=eqcopy.wrap(rhs, str_node("\\partial"));
multiply(rhs->multiplier, mult);
multiply(rhs->multiplier, *it->multiplier);
// auto pch=tr.begin(it);
// iterator arg=tr.begin(rhs);
for(size_t j=0, cb_j=0; j<ni; ++j) {
#ifdef DEBUG
std::cerr << j << " : ";
#endif
bool done=false;
for(auto& d: dummy_positions) {
if(d.first==j) {
// This index is forced to a value because it is a dummy of which the partner
// is fixed by the argument on which the derivative acts.
#ifdef DEBUG
std::cerr << "fixed" << std::endl;
#endif
eqcopy.insert_subtree(rhs.begin(), tr.child(lhs,d.second))->fl.parent_rel=str_node::p_sub;
done=true;
break;
}
}
// std::cerr << "testing index " << j << " of \n" << Ex(it) << std::endl;
if(kernel.properties.get<Coordinate>(tr.child(it, j), true)!=0) {
// std::cerr << "Coordinate, so need straight copy" << std::endl;
eqcopy.insert_subtree(rhs.begin(), tr.child(it,j))->fl.parent_rel=str_node::p_sub;
done=true;
}
if(!done) {
// If we get here, the index value was not fixed because it is part of an
// already fixed dummy pair. And it was not fixed because the index was a
// Coordinate.
size_t fromj=cb_j;
Ex iname(tr.child(it,j));
auto fi = d2p.find(iname);
if(fi!=d2p.end()) {
fromj = (*fi).second;
if(fromj == cb_j)
++cb_j;
}
else {
++cb_j;
}
// std::cerr << "cb: " << i << ", " << fromj << std::endl;
eqcopy.insert_subtree(rhs.begin(), cb[i][fromj].begin() )->fl.parent_rel=str_node::p_sub;
}
}
// std::cerr << "----" << std::endl;
// For all dummy pairs which have one index on the
// \components node inside the derivative, we need to
// remove the corresponding value from the components
// node.
std::vector<sibling_iterator> sibs_to_erase;
for(auto di: dummy_positions) {
sibs_to_erase.push_back(tr.child(lhs, di.second));
}
for(auto se: sibs_to_erase)
tr.erase(se);
// Now move this replacement expression into the tree.
// std::cerr << "Replacement now " << std::endl;
// std::cerr << eqcopy << std::endl;
tr.move_before(tr.begin(ivalues), eqcopy.begin());
if(cb.size()==0) break;
}
// Erase the original \equals entry (we generated a full replacement above).
tr.erase(iv);
return true;
});
#ifdef DEBUG
std::cerr << tr.number_of_children(ivalues) << " nonzero components in this derivative" << std::endl;
#endif
if(tr.number_of_children(ivalues)==0) {
// All components of the derivative evaluated to zero because
// there were no dependencies. Replace this derivative node with
// a zero and return;
node_zero(it);
return it;
}
one(it->multiplier);
#ifdef DEBUG
std::cerr << "now " << Ex(it) << std::endl;
#endif
// Now move the free (but not the internal dummy or Coordinate!)
// partial indices to the components node, and then unwrap the
// partial node.
auto pch=tr.begin(it);
for(size_t n=0; n<ni; ++n) {
sibling_iterator nxt=pch;
++nxt;
if(ind_dummy.find(Ex(pch))!=ind_dummy.end()) {
tr.erase(pch);
}
else if(kernel.properties.get<Coordinate>(pch, true)!=0) {
tr.erase(pch);
}
else
tr.move_before(ivalues, pch);
pch=nxt;
}
// Remove indices from the components node which came from the
// argument and which are dummy.
it=tr.flatten_and_erase(it);
auto se = tr.begin(it);
while(se!=tr.end(it)) {
if(ind_dummy.find(Ex(se))!=ind_dummy.end())
se = tr.erase(se);
else
++se;
}
#ifdef DEBUG
std::cerr << "after index move " << Ex(it) << std::endl;
#endif
merge_component_children(it);
#ifdef DEBUG
std::cerr << "after merge " << Ex(it) << std::endl;
#endif
if(call_sympy)
simplify_components(it);
// std::cerr << "then " << Ex(it) << std::endl;
return it;
}
Ex::iterator evaluate::handle_epsilon(iterator it)
{
Ex rep("\\components");
// attach indices to components
// figure out the index value ranges
// generate permutations of 'r1 ... rn' and signs
// fill components
auto sib=tr.begin(it);
while(sib!=tr.end(it)) {
rep.append_child(rep.begin(), (iterator)sib);
++sib;
}
auto cvals = rep.append_child(rep.begin(), str_node("\\comma"));
sib=tr.begin(it);
const Indices *ind = kernel.properties.get<Indices>(sib);
if(ind==0)
throw ArgumentException("No Indices property known for indices in EpsilonTensor.");
combin::combinations<Ex> cb;
for(auto& val: ind->values)
cb.original.push_back(val);
cb.multiple_pick=false;
cb.block_length=1;
cb.set_unit_sublengths();
cb.permute();
for(unsigned int i=0; i<cb.size(); ++i) {
auto equals = rep.append_child(cvals, str_node("\\equals"));
auto vcomma = rep.append_child(equals, str_node("\\comma"));
for(unsigned int j=0; j<cb.original.size(); ++j) {
// std::cerr << *(cb[i][j].begin()->multiplier) << " ";
rep.append_child(vcomma, cb[i][j].begin());
}
auto one = rep.append_child(equals, str_node("1"));
multiply(one->multiplier, cb.ordersign(i));
// std::cerr << std::endl;
}
it=tr.move_ontop(it, rep.begin());
return it;
}
void evaluate::simplify_components(iterator it)
{
assert(*it->name=="\\components");
// Simplify the components of the now single \component node by
// calling the scalar backend. We feed it the components
// individually.
sibling_iterator lst = tr.end(it);
--lst;
cadabra::simplify simp(kernel, tr);
simp.set_progress_monitor(pm);
cadabra::do_list(tr, lst, [&](Ex::iterator eqs) {
assert(*eqs->name=="\\equals");
auto rhs1 = tr.begin(eqs);
++rhs1;
iterator nd=rhs1;
{
ScopedProgressGroup group(pm, "scalar_backend");
// std::cerr << "simplify at " << Ex(nd) << std::endl;
simp.apply_generic(nd, false, false, 0);
}
if(nd->is_zero()) {
// std::cerr << "component zero " << nd.node << std::endl;
tr.erase(eqs);
}
else {
// std::cerr << "component non-zero " << nd.node << std::endl;
}
return true;
});
// Note: the 'erase' in the loop above may have left us with a
// \components node with an empty list of component values. However,
// since all logic expects to find a \component node, we do NOT yet
// replace this with a scalar zero here.
}
std::set<Ex, tree_exact_less_obj> evaluate::dependencies(iterator it)
{
tree_exact_less_obj comp(&kernel.properties);
std::set<Ex, tree_exact_less_obj> ret(comp);
// Is this node a coordinate itself? If so, add it.
const Coordinate *cd = kernel.properties.get<Coordinate>(it, true);
if(cd) {
Ex cpy(it);
cpy.begin()->fl.bracket=str_node::b_none;
cpy.begin()->fl.parent_rel=str_node::p_none;
one(cpy.begin()->multiplier);
ret.insert(cpy);
}
// Determine explicit dependence on Coordinates, that is, collect
// parent_rel=p_none arguments, and add them directly if they
// carry a Coordinate property, or run the algorithm recursively
// if not (to catch e.g. exp(F(r)) depending on 'r'.
cadabra::do_subtree(tr, it, [&](Ex::iterator nd) -> Ex::iterator {
if(nd==it) return nd; // skip node itself, leads to indefinite recursion
if(nd->fl.parent_rel==str_node::p_none)
{
const Coordinate *cd = kernel.properties.get<Coordinate>(nd, true);
if(cd) {
Ex cpy(nd);
cpy.begin()->fl.bracket=str_node::b_none;
cpy.begin()->fl.parent_rel=str_node::p_none;
one(cpy.begin()->multiplier);
ret.insert(cpy);
}
else {
auto arg_deps=dependencies(nd);
if(arg_deps.size()>0)
for(const auto& new_dep: arg_deps)
ret.insert(new_dep);
}
}
return nd;
});
// Determine implicit dependence via Depends.
#ifdef DEBUG
std::cerr << "deps for " << Ex(it) << std::endl;
#endif
const DependsBase *dep = kernel.properties.get<DependsBase>(it, true);
if(dep) {
#ifdef DEBUG
std::cerr << "implicit deps" << std::endl;
#endif
Ex deps(dep->dependencies(kernel, it));
cadabra::do_list(deps, deps.begin(), [&](Ex::iterator nd) {
Ex cpy(nd);
cpy.begin()->fl.bracket=str_node::b_none;
cpy.begin()->fl.parent_rel=str_node::p_none;
ret.insert(cpy);
return true;
});
#ifdef DEBUG
for(auto& e: ret)
std::cerr << e << std::endl;
#endif
}
return ret;
}
Algorithm::iterator evaluate::wrap_scalar_in_components_node(iterator sib)
{
// FIXME: would be good if we could write this in a more readable form.
auto eq=tr.wrap(sib, str_node("\\equals"));
tr.prepend_child(eq, str_node("\\comma"));
eq=tr.wrap(eq, str_node("\\comma"));
sib=tr.wrap(eq, str_node("\\components"));
return sib;
}
void evaluate::unwrap_scalar_in_components_node(iterator it)
{
// To apply to a scalar function: remove all scalars wrapped in
// components nodes and make them normal scalars again.
auto sib=tr.begin(it);
while(sib!=tr.end(it)) {
if(*sib->name=="\\components") {
iterator tmp=sib;
::cleanup_components(kernel, tr, tmp);
}
++sib;
}
}
Ex::iterator evaluate::handle_prod(iterator it)
{
// std::cerr << "handle_prod " << Ex(it) << std::endl;
std::string prod_name=*it->name;
// All factors are either \component nodes, pure scalar nodes, or nodes which still need replacing.
// The handle_factor function takes care of the latter two.
sibling_iterator sib=tr.begin(it);
while(sib!=tr.end(it)) {
sibling_iterator nxt=sib;
++nxt;
if(*sib->multiplier==0) { // zero factors make the entire product zero.
node_zero(it);
return it;
}
if(is_component(sib)==false) {
index_map_t empty;
handle_factor(sib, empty);
}
sib=nxt;
}
// TRACE: If a factor has not had a rule match, it will be left
// un-evaluated here. So you get
// X^{a} \component_{a}( 0=3, 2=-5 )
// and then we fail lower down. What we could do is let
// handle_factor write out such unevaluated expressions to
// component ones. That's somewhat wasteful though.
#ifdef DEBUG
std::cerr << "every factor a \\components:\n" << Ex(it) << std::endl;
#endif
// Now every factor in the product is a \component node. The thing
// is effectively a large sparse tensor product. We need to do the
// sums over the dummy indices, turning this into a single
// \component node.
index_map_t ind_free, ind_dummy;
classify_indices(it, ind_free, ind_dummy);
auto di = ind_dummy.begin();
// Since no factor can be a sum anymore, dummy indices always occur in pairs,
// there is no need to account for anything more tricky. Every pair leads
// to a sum.
while(di!=ind_dummy.end()) {
auto di2=di;
++di2;
int num1 = tr.index(di->second);
int num2 = tr.index(di2->second);
// std::cerr << *(di->first.begin()->name)
// << " is index " << num1 << " in first and index " << num2 << " in second node " << std::endl;
// three cases:
// two factors, single index in common. Merge is simple.
// two factors, more than one index in common. After merging this turns into:
// single factor, self-contraction
auto cit1 = tr.parent(di->second);
auto cit2 = tr.parent(di2->second);
// Are the components objects cit1, cit2 on which these indices sit the same one?
if(cit1 != cit2) {
// Walk through all components of the first tensor, and for each check whether
// any of the components of the second tensor matches the value for this dummy
// index.
sibling_iterator sib1=tr.end(cit1);
--sib1;
sibling_iterator sib2=tr.end(cit2);
--sib2;
// Move all indices of the second tensor to be indices of the first.
sibling_iterator mv=tr.begin(cit2);
while(mv!=sib2) {
sibling_iterator nxt=mv;
++nxt;
tr.move_before(sib1, mv);
mv=nxt;
}
cadabra::do_list(tr, sib1, [&](Ex::iterator it1) {
if(*it1->name!="\\equals")
std::cerr << *it->name << std::endl;
assert(*it1->name=="\\equals");
auto lhs1 = tr.begin(it1);
auto ivalue1 = tr.begin(lhs1);
ivalue1 += num1;
cadabra::do_list(tr, sib2, [&](Ex::iterator it2) {
assert(*it2->name=="\\equals");
auto lhs2 = tr.begin(it2);
auto ivalue2 = tr.begin(lhs2);
ivalue2 += num2;
// Compare the two index values in the two tensors, only continue if
// these are the same.
// std::cerr << "comparing value " << *ivalue1->name << " with " << *ivalue2->name << std::endl;
// std::cerr << " " << &(*ivalue1) << " vs " << &(*ivalue2) << std::endl;
if(tr.equal_subtree(ivalue1,ivalue2)) {
// Create new merged index value set.
Ex ivs("\\equals");
auto ivs_lhs = tr.append_child(ivs.begin(), str_node("\\comma"));
auto ivs_rhs = tr.append_child(ivs.begin(), str_node(prod_name));
auto ci = tr.begin(lhs1);
int n=0;
while(ci!=tr.end(lhs1)) {
if(n!=num1)
ivs.append_child(ivs_lhs, iterator(ci));
++ci;
++n;
}
ci = ivs.begin(lhs2);
n=0;
while(ci!=ivs.end(lhs2)) {
if(n!=num2)
ivs.append_child(ivs_lhs, iterator(ci));
++ci;
++n;
}
auto rhs1=lhs1;
++rhs1;
ivs.append_child(ivs_rhs, iterator(rhs1));
auto rhs2=lhs2;
++rhs2;
ivs.append_child(ivs_rhs, iterator(rhs2));
//std::cerr << "ivs_rhs = " << Ex(ivs_rhs) << std::endl;
cleanup_dispatch_deep(kernel, ivs);
// Insert this new index value set before sib1, so that it will not get used
// inside the outer loop.
tr.move_before(it1, ivs.begin());
}
return true;
});
// This index value set can now be erased as all
// possible combinations have been considered.
tr.erase(it1);
return true;
});
// Remove the dummy indices from the index set of tensor 1.
tr.erase(di->second);
tr.erase(di2->second);
// Tensor 2 can now be removed from the product as well, as all information is now
// part of tensor 1.
tr.erase(cit2);
}
else {
// Components objects cit1 and cit2 are actually the same. We just need to
// do a single loop now, going over all index value sets and keeping those
// for which the num1-th and num2-th value are identical.
sibling_iterator sib1=tr.end(cit1);
--sib1;
cadabra::do_list(tr, sib1, [&](Ex::iterator it1) {
assert(*it1->name=="\\equals");
auto lhs = tr.begin(it1);
auto ivalue1 = tr.begin(lhs);
auto ivalue2 = ivalue1;
ivalue1 += num1;
ivalue2 += num2;
if(tr.equal_subtree(ivalue1,ivalue2)) {
tr.erase(ivalue1);
tr.erase(ivalue2);
}
else {
tr.erase(it1);
}
return true;
}
);
tr.erase(di->second);
tr.erase(di2->second);
}
++di;
++di;
}
// TRACE: are we still ok here? Looks ok: one component node
// with no indices.
// std::cerr << "Before doing outer product:\n" << Ex(it) << std::endl;
// At this stage we have one or more components nodes in the product,
// and we have collected all possible index value combinations.
// We need to do an outer multiplication, merging all index names into
// one, and computing tensor component values for all possible index values.
int n=tr.number_of_children(it);
// std::cerr << "outer product:\n" << Ex(it) << std::endl;
if(n>1) {
//std::cerr << "merging" << std::endl;
auto first=tr.begin(it); // component node
auto other=first;
++other;
auto fi=tr.end(first);
--fi;
// Add the free indices of 'other' to 'first'.
while(other!=tr.end(it)) {
auto oi=tr.begin(other);
while(oi!=tr.end(other)) {
if(oi->is_index()==false)
break;
tr.insert_subtree(fi, oi);
++oi;
}
++other;
}
// Now do an outer combination of all possible indexvalue/componentvalue
// in the various component nodes.
auto comma1=tr.end(first);
--comma1;
other=first;
++other;
while(other!=tr.end(it)) {
Ex newcomma("\\comma"); // List of index value combinations and associated component values
auto comma2=tr.end(other);
--comma2;
assert(*comma1->name=="\\comma");
assert(*comma2->name=="\\comma");
auto eq1=tr.begin(comma1); // The \equals node
while(eq1!=tr.end(comma1)) {
auto eq2=tr.begin(comma2);
while(eq2!=tr.end(comma2)) {
// Collect all index values.
auto neq = newcomma.append_child(newcomma.begin(), str_node("\\equals"));
auto ncm = newcomma.append_child(neq, str_node("\\comma")); // List of index values
auto iv=tr.begin(tr.begin(eq1));
while(iv!=tr.end(tr.begin(eq1))) {
newcomma.append_child(ncm, iterator(iv));
++iv;
}
iv=tr.begin(tr.begin(eq2));
while(iv!=tr.end(tr.begin(eq2))) {
newcomma.append_child(ncm, iterator(iv));
++iv;
}
// Multiply component values.
Ex prod(*it->name);
iv=tr.end(eq1);
--iv;
prod.append_child(prod.begin(), iterator(iv));
iv=tr.end(eq2);
--iv;
prod.append_child(prod.begin(), iterator(iv));
cleanup_dispatch_deep(kernel, prod);
newcomma.append_child(neq, prod.begin());
++eq2;
}
++eq1;
}
// Now replace the original comma1 node with newcomma, and re-iterate if there
// are further factors in the tensor product.
comma1 = tr.move_ontop(iterator(comma1), newcomma.begin());
other=tr.erase(other);
}
// std::cerr << Ex(it) << std::endl;
}
// At this stage, there should be only one factor in the product, which
// should be a \components node. We do a cleanup, after which it should be
// at the 'it' node.
assert(*it->name=="\\prod" || *it->name=="\\wedge" || *it->name=="\\frac");
assert(tr.number_of_children(it)==1);
assert(*tr.begin(it)->name=="\\components");
tr.begin(it)->fl.bracket=it->fl.bracket;
tr.begin(it)->fl.parent_rel=it->fl.parent_rel;
tr.begin(it)->multiplier=it->multiplier;
tr.flatten(it);
it=tr.erase(it);
push_down_multiplier(kernel, tr, it);
// iterator pr=tr.end();
// if(tr.is_head(it)==false) {
// pr=tr.parent(it);
// std::cerr << "Tracing just before merge:\n " << Ex(pr) << std::endl;
// }
merge_component_children(it);
// if(pr!=tr.end())
// std::cerr << "after component merge:\n " << Ex(pr) << std::endl;
// cleanup_dispatch(kernel, tr, it);
// if(pr!=tr.end())
// std::cerr << "And afterwards:\n " << Ex(pr) << std::endl;
if(*it->name!="\\components") {
// The result is a scalar. Because we are expected to return
// a \components node, we wrap this scalar again.
// std::cerr << "wrapping scalar" << std::endl;
it=wrap_scalar_in_components_node(it);
// std::cerr << Ex(it) << std::endl;
}
// else {
// // We may have duplicate index value entries; merge them.
// merge_component_children(it);
// }
// Use sympy to simplify components.
if(call_sympy)
simplify_components(it);
//std::cerr << "simplified:\n" << Ex(it) << std::endl;
return it;
}
|