1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
#include "Functional.hh"
#include "algorithms/factor_in.hh"
#include <boost/functional/hash.hpp>
#define DBG_MACRO_NO_WARNING
#define DBG_MACRO_DISABLE
#include "dbg.h"
using namespace cadabra;
factor_in::factor_in(const Kernel& k, Ex& tr, Ex& factors_)
: Algorithm(k, tr), factors(factors_)
{
}
bool factor_in::can_apply(iterator st)
{
factnodes.clear();
assert(tr.is_valid(st));
if(*st->name=="\\sum") {
cadabra::do_list(factors, factors.begin(), [&](Ex::iterator f) {
factnodes.insert(Ex(f));
return true;
});
return true;
}
else return false;
}
hashval_t factor_in::calc_restricted_hash(iterator it) const
{
if(*it->name!="\\prod") return tr.calc_hash(it);
hashval_t ret=0;
// boost::hash_combine(ret, *it->name);
auto sib=tr.begin(it);
bool first=true;
while(sib!=tr.end(it)) { // see storage.cc for the original calc_hash
if(factnodes.count(Ex(sib))==0) {
if(first) {
// ensure that if there is only one factor, the hash equals tr.calc_hash
// on that single factor.
first=false;
ret=tr.calc_hash(sib);
}
else
boost::hash_combine(ret, tr.calc_hash(sib));
}
++sib;
}
return ret;
}
void factor_in::fill_hash_map(iterator it)
{
term_hash.clear();
sibling_iterator sib=tr.begin(it);
unsigned int terms=0;
while(sib!=tr.end(it)) {
dbg( sib );
dbg( calc_restricted_hash(sib) );
term_hash.insert(std::pair<hashval_t, sibling_iterator>(calc_restricted_hash(sib), sib));
++terms;
++sib;
}
}
bool factor_in::compare_prod_nonprod(iterator prod, iterator nonprod) const
{
assert(*(prod->name)=="\\prod");
assert(*(nonprod->name)!="\\prod");
sibling_iterator it=tr.begin(prod);
bool found=false;
while(it!=tr.end(prod)) {
if(factnodes.count(Ex(it))==0) {
if(nonprod->name==it->name) { // FIXME: subtree_equal
if(found) return false; // already found
else found=true;
}
else return false;
}
++it;
}
if(found || (!found && factnodes.count(nonprod)!=0)) return true;
return false;
}
bool factor_in::compare_restricted(iterator one, iterator two) const
{
if(one->name==two->name) {
if(*one->name=="\\prod") {
sibling_iterator it1=tr.begin(one), it2=tr.begin(two);
while(it1!=tr.end(one) && it2!=tr.end(two)) {
if(factnodes.count(Ex(it1))!=0) {
++it1;
continue;
}
if(factnodes.count(Ex(it2))!=0) {
++it2;
continue;
}
iterator nxt=it1;
nxt.skip_children();
++nxt;
if(!tr.equal(tr.begin(it1), sibling_iterator(nxt), tr.begin(it2)))
return false;
++it1;
++it2;
}
}
}
else {
if(*one->name=="\\prod" && *two->name!="\\prod")
return compare_prod_nonprod(one,two);
else if(*one->name!="\\prod" && *two->name=="\\prod")
return compare_prod_nonprod(two,one);
}
return true;
}
Algorithm::result_t factor_in::apply(iterator& it)
{
result_t ret=result_t::l_no_action;
fill_hash_map(it);
term_hash_iterator_t ht=term_hash.begin();
while(ht!=term_hash.end()) { // loop over hash bins
hashval_t curr=ht->first;
term_hash_iterator_t thisbin1=ht, thisbin2=ht;
++thisbin2;
if(thisbin2==term_hash.end() || thisbin2->first!=thisbin1->first) { // only one term in this bin
++ht;
continue;
}
// extract the prefactor of every term in this bin.
std::map<iterator, Ex, Ex::iterator_base_less> prefactors;
while(thisbin1!=term_hash.end() && thisbin1->first==curr) {
Ex prefac;
// txtout << "doing one" << std::endl;
prefac.set_head(str_node("\\sum"));
if(*(thisbin1->second->name)=="\\prod") { // search for all to-be-factored-out factors
iterator prefacprod=prefac.append_child(prefac.begin(), str_node("\\prod"));
sibling_iterator ps=tr.begin(thisbin1->second);
while(ps!=tr.end(thisbin1->second)) {
if(factnodes.count(Ex(ps))!=0) {
prefac.append_child(prefacprod, (iterator)(ps));
}
++ps;
}
prefacprod->multiplier=thisbin1->second->multiplier;
switch(prefac.number_of_children(prefacprod)) {
case 0:
prefacprod->name=name_set.insert("1").first;
break;
case 1:
multiply(prefac.begin(prefacprod)->multiplier, *(prefacprod->multiplier));
prefac.flatten(prefacprod);
prefacprod=prefac.erase(prefacprod);
break;
}
}
else { // just insert the constant
str_node pf("1");
pf.multiplier=thisbin1->second->multiplier;
prefac.append_child(prefac.begin(), pf);
}
prefactors[thisbin1->second]=prefac;
++thisbin1;
}
// add up prefactors for terms which differ only by the prefactor
thisbin1=ht;
while(thisbin1!=term_hash.end() && thisbin1->first==curr) {
thisbin2=thisbin1;
++thisbin2;
while(thisbin2!=term_hash.end() && thisbin2->first==curr) {
if(compare_restricted(thisbin1->second, thisbin2->second)) {
ret=result_t::l_applied;
// txtout << "found match" << std::endl;
assert(prefactors.count(thisbin1->second)>0);
assert(prefactors.count(thisbin2->second)>0);
iterator sumhead1=prefactors[thisbin1->second].begin();
iterator sumhead2=prefactors[thisbin2->second].begin();
tr.reparent(sumhead1,tr.begin(sumhead2),tr.end(sumhead2));
// txtout << "reparented" << std::endl;
zero((*thisbin2).second->multiplier);
prefactors.erase(thisbin2->second);
term_hash_iterator_t tmp=thisbin2;
++tmp;
term_hash.erase(thisbin2);
thisbin2=tmp;
}
else ++thisbin2;
}
++thisbin1;
}
// remove old prefactors and add prefactor sums
std::map<iterator, Ex, Ex::iterator_base_less>::iterator prefit=prefactors.begin();
while(prefit!=prefactors.end()) {
if(tr.number_of_children(prefit->second.begin())>1) { // only do this if there really is more than just one term
sibling_iterator facit=tr.begin(prefit->first);
while(facit!=tr.end(prefit->first)) {
if(factnodes.count(Ex(facit))>0)
facit=tr.erase(facit);
else
++facit;
}
iterator inserthere=prefit->first.begin();
if(*(prefit->first->name)!="\\prod") {
iterator prodnode=tr.insert(prefit->first, str_node("\\prod"));
one(prefit->first->multiplier);
tr.append_child(prodnode, prefit->first); // FIXME: we need a 'move'
tr.erase(prefit->first);
inserthere=tr.begin(prodnode);
}
else one(prefit->first->multiplier);
tr.insert_subtree(inserthere, (*prefit).second.begin());
}
++prefit;
}
ht=thisbin1;
}
// Remove all terms which have zero multiplier.
// Remove all terms which are empty `\prod` nodes.
// Distribute sum multipliers over terms.
// dbg( it );
sibling_iterator one=tr.begin(it);
while(one!=tr.end(it)) {
// dbg( one );
if(*one->multiplier==0)
one=tr.erase(one);
else if(*one->name=="\\prod" && tr.number_of_children(one)==0) {
one=tr.erase(one);
}
else if(*one->name=="\\sum" && *one->multiplier!=1) {
sibling_iterator oneit=tr.begin(one);
while(oneit!=tr.end(one)) {
multiply(oneit->multiplier, *one->multiplier);
++oneit;
}
one->multiplier=rat_set.insert(1).first;
++one;
}
else ++one;
}
// If there is only one term in the sum left, flatten the tree.
if(tr.number_of_children(it)==1) {
tr.begin(it)->fl.bracket=it->fl.bracket;
tr.begin(it)->fl.parent_rel=it->fl.parent_rel;
tr.flatten(it);
it=tr.erase(it);
}
else if(tr.number_of_children(it)==0) {
it->multiplier=rat_set.insert(0).first;
}
return ret;
}
|