1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
#include "Cleanup.hh"
#include "Functional.hh"
#include "algorithms/factor_out.hh"
#include "algorithms/sort_product.hh"
#include <map>
using namespace cadabra;
factor_out::factor_out(const Kernel& k, Ex& e, Ex& args, bool right)
: Algorithm(k, e), to_right(right)
{
cadabra::do_list(args, args.begin(), [&](Ex::iterator arg) {
to_factor_out.push_back(Ex(arg));
return true;
}
);
}
/// Check if the expression is a sum with more than one term
bool factor_out::can_apply(iterator st)
{
if(*st->name=="\\sum") return true;
return false;
}
Algorithm::result_t factor_out::apply(iterator& it)
{
result_t result=result_t::l_no_action;
// For every term in the sum, we look at the factors in the product
// (or at the single object if there is no product). If this factor
// needs to be factored out, we determine if it can be moved all the
// way to the left of the expression. If so, move the object to
// a 'factored_out' temporary, and take out of the tree. Rinse/repeat.
// What's left at the end is two objects: the stuff factored out,
// and the rest. Look up if we already have 'the stuff factored out'.
// If not, create new. If so, add this term.
Ex_comparator comparator(kernel.properties);
typedef std::pair<Ex, std::vector<Ex> > new_term_t;
std::vector<new_term_t> new_terms;
auto term=tr.begin(it);
while(term!=tr.end(it)) {
auto next_term=term;
++next_term;
iterator prod=term;
prod_wrap_single_term(prod);
Ex collector("\\prod"); // collect all factors that we have taken out
// Insert a dummy symbol at the very front or back.
// FIXME: there is now a 'can_move_to_front', use that.
iterator dummy;
if(to_right) dummy = tr.append_child(prod, str_node("dummy"));
else dummy = tr.prepend_child(prod, str_node("dummy"));
// Look at all factors in turn and determine if they should be taken out.
if(to_right) {
auto fac=tr.end(prod);
auto next=fac;
--next;
do {
fac=next;
--next;
for(size_t i=0; i<to_factor_out.size(); ++i) {
auto match=comparator.equal_subtree(fac, to_factor_out[i].begin());
if(match==Ex_comparator::match_t::subtree_match) {
int sign=comparator.can_move_adjacent(prod, dummy, fac, false);
if(sign!=0) {
collector.append_child(collector.begin(), iterator(fac));
multiply(prod->multiplier, sign);
next=tr.erase(fac);
result=result_t::l_applied;
break;
}
}
}
}
while(fac!=tr.begin(prod));
}
else {
auto fac=tr.begin(prod);
while(fac!=tr.end(prod)) {
auto next=fac;
++next;
for(size_t i=0; i<to_factor_out.size(); ++i) {
auto match=comparator.equal_subtree(fac, to_factor_out[i].begin());
if(match==Ex_comparator::match_t::subtree_match) {
int sign=comparator.can_move_adjacent(prod, dummy, fac, true);
if(sign!=0) {
collector.append_child(collector.begin(), iterator(fac));
multiply(prod->multiplier, sign);
next=tr.erase(fac);
result=result_t::l_applied;
break;
}
}
}
fac=next;
}
}
tr.erase(dummy);
if(tr.number_of_children(prod)==0)
tr.append_child(prod, str_node("1"));
// std::cerr << "product after factoring out " << Ex(prod) << std::endl;
if(collector.number_of_children(collector.begin())!=0) {
// The stuff factored out of this term is in 'collector'. See if we have
// factored out that thing before. Because we may not always have collected
// factors in the same order (the original expression may not have had
// its product sorted), we first sort the collector product.
sort_product sp(kernel, collector);
sp.dont_cleanup(); // otherwise single-factor products will get stripped of the \prod wrapper.
auto coltop=collector.begin();
if(sp.can_apply(coltop)) {
sp.apply(coltop);
}
multiply(prod->multiplier, *coltop->multiplier);
one(coltop->multiplier);
// Scan through the things factored out so far.
bool found=false;
for(auto& nt: new_terms) {
if(nt.first==collector) { // have that factored out already, add the other factors
nt.second.push_back(Ex(prod));
found=true;
break;
}
}
// We hadn't factored this bit out before, make a new term.
if(!found) {
std::vector<Ex> v;
v.push_back(Ex(prod));
new_term_t nt(collector, v);
new_terms.push_back(nt);
}
// All info is now in new_terms; can remove the original.
tr.erase(prod);
}
else {
prod_unwrap_single_term(prod);
}
term=next_term;
}
// Everything has been collected now into new_terms. Expand those out
// into a proper sum of products.
for(auto& nt: new_terms) {
auto prod = tr.append_child(it, nt.first.begin());
if(nt.second.size()==1) { // factored, but only one term found.
auto top = nt.second[0].begin(); // prod node
if(to_right) {
auto ins = tr.end(top);
--ins;
while(tr.is_valid(ins)) {
tr.prepend_child(prod, iterator(ins));
--ins;
}
}
else {
auto ins = tr.begin(top);
while(ins!=tr.end(top)) {
tr.append_child(prod, iterator(ins));
++ins;
}
}
multiply(prod->multiplier, *(nt.second[0].begin()->multiplier));
// FIXME: append_children has a BUG! Messes up the tree. But it is needed to
// handle terms where the sub-factor is not a simple element.
// tr.append_children(prod, nt.second[0].begin(top), nt.second[0].end(top));
cleanup_dispatch(kernel, tr, prod);
}
else {
iterator sum;
if(to_right)
sum = tr.prepend_child(prod, str_node("\\sum"));
else
sum = tr.append_child(prod, str_node("\\sum"));
for(auto& term: nt.second) {
auto tmp = tr.append_child(sum, term.begin());
cleanup_dispatch(kernel, tr, tmp);
}
}
}
// std::cerr << "end of factor_out: \n" << Ex(it) << std::endl;
return result;
}
|