1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
#include <iterator>
#include "algorithms/integrate_by_parts.hh"
#include "properties/Derivative.hh"
#include "Cleanup.hh"
using namespace cadabra;
integrate_by_parts::integrate_by_parts(const Kernel& k, Ex& tr, Ex& af)
: Algorithm(k, tr), away_from(af)
{
}
bool integrate_by_parts::can_apply(iterator st)
{
if(*st->name=="\\int") return true;
return false;
}
Algorithm::result_t integrate_by_parts::apply(iterator& it)
{
result_t ret=result_t::l_no_action;
auto sib=tr.begin(it);
while(sib!=tr.end(it)) {
if(sib->fl.parent_rel==str_node::p_none) {
// Have found the integrand.
if(*sib->name=="\\sum") {
auto term=tr.begin(sib);
while(term!=tr.end(sib)) {
iterator ti(term);
++term;
auto res=handle_term(it, ti);
if(res==result_t::l_applied) {
ret=res;
cleanup_dispatch(kernel, tr, ti);
}
}
// Cleanup nested sums
iterator tmp(sib);
cleanup_dispatch(kernel, tr, tmp);
}
else {
iterator ti(sib);
ret=handle_term(it, ti);
if(ret==result_t::l_applied)
cleanup_dispatch(kernel, tr, ti);
}
break;
}
++sib;
}
cleanup_dispatch(kernel, tr, it);
return ret;
}
bool integrate_by_parts::int_and_derivative_related(iterator, iterator) const
{
return true;
}
bool integrate_by_parts::derivative_acting_on_arg(iterator der_it) const
{
sibling_iterator arg=tr.begin(der_it);
while(arg->is_index())
++arg;
Ex_comparator comp(kernel.properties);
auto top=away_from.begin();
if( is_in( comp.equal_subtree(top, arg), {
Ex_comparator::match_t::subtree_match,
Ex_comparator::match_t::match_index_less,
Ex_comparator::match_t::match_index_greater
} ) ) return true;
return false;
}
void integrate_by_parts::split_off_single_derivative(iterator, iterator der_it)
{
auto ni=number_of_direct_indices(der_it);
if(ni==0 || ni==1) return;
sibling_iterator sib=tr.begin(der_it);
++sib;
sibling_iterator arg=sib;
while(arg!=tr.end(der_it) && arg->is_index())
++arg;
if(arg==tr.end(der_it))
throw ConsistencyException("Derivative without argument encountered");
auto wrap=tr.wrap(arg, str_node(der_it->name));
while(sib!=wrap) {
auto nxt=sib;
++nxt;
tr.move_before(tr.begin(wrap), sib);
sib=nxt;
}
}
Algorithm::result_t integrate_by_parts::handle_term(iterator int_it, iterator& it)
{
// Either this is a Derivative node, in which case it is a total derivative.
// Or this is a product, in which case we need to scan factors for a Derivative
// and figure out whether it contains the searched-for expression.
if(*it->name=="\\ldots") return result_t::l_no_action;
const Derivative *dtop=kernel.properties.get<Derivative>(it);
if(dtop) {
if(int_and_derivative_related(int_it, it)) {
zero(it->multiplier);
return result_t::l_applied;
}
}
prod_wrap_single_term(it);
assert(*it->name=="\\prod");
auto fac=tr.begin(it);
int pos=0;
while(fac!=tr.end(it)) {
const Derivative *der=kernel.properties.get<Derivative>(fac);
if(der) {
// If this is a multiple partial derivative, we split off the
// outermost derivative and then look at the remaining argument.
split_off_single_derivative(int_it, fac);
// std::cerr << "after split-off:" << int_it << std::endl;
// std::cerr << " c1: " << int_and_derivative_related(int_it, fac) << std::endl;
// std::cerr << " c2: " << derivative_acting_on_arg(fac) << std::endl;
if(int_and_derivative_related(int_it, fac) && derivative_acting_on_arg(fac) ) {
// Generate one term with the derivative acting on all
// factors which come before the derivative node (if
// present). Generate another one for those factors
// coming after the derivative (if present).
// FIXME: this does not yet take anti-commutativity of the
// derivative itself into account.
if(fac==tr.begin(it) || std::next(fac)==tr.end(it)) {
// Derivative is first or last factor in product; generate one term only.
// Note: total derivatives have already been handled!
sibling_iterator from, to;
if(fac==tr.begin(it)) {
from=fac;
++from;
to=tr.end(it);
}
else {
from=tr.begin(it);
to=fac;
}
if(std::next(from)!=to)
from = tr.wrap(from, to, str_node("\\prod"));
// Find the argument of the derivative. Needs to handle derivatives with
// a single index, and derivatives with no index at all.
auto der_arg = tr.begin(fac);
if(der_arg==tr.end(fac))
throw ConsistencyException("integrate_by_parts: Derivative without argument encountered.");
if(der_arg->is_index()) {
++der_arg;
// This _has_ to be the argument because we have peeled off a single derivative.
if(der_arg==tr.end(fac))
throw ConsistencyException("integrate_by_parts: Derivative without argument encountered.");
}
tr.swap(der_arg, from);
tr.swap(fac, der_arg);
multiply(it->multiplier, -1);
iterator tmp(fac);
cleanup_dispatch(kernel, tr, tmp);
return result_t::l_applied;
}
else {
// Two terms needed.
Ex sum("\\sum");
auto t1prod = sum.append_child(sum.begin(), it);
auto t2prod = sum.append_child(sum.begin(), it);
// First term.
sibling_iterator from=sum.begin(t1prod);
sibling_iterator to =from;
to+=pos;
if(std::next(from)!=to)
from = tr.wrap(from, to, str_node("\\prod"));
auto der_arg = tr.begin(to);
while(der_arg->is_index() && der_arg!=tr.end(to))
++der_arg;
if(der_arg==tr.end(to))
throw ConsistencyException("integrate_by_parts: Derivative without argument encountered.");
tr.swap(der_arg, from);
tr.swap(to, der_arg);
multiply(t1prod->multiplier, -1);
iterator tmp(to);
cleanup_dispatch(kernel, tr, tmp);
// Second term.
from=sum.begin(t2prod);
from+=pos;
auto der=from;
++from;
to =sum.end(t2prod);
if(std::next(from)!=to)
from = tr.wrap(from, to, str_node("\\prod"));
der_arg = tr.begin(der);
while(der_arg->is_index() && der_arg!=tr.end(der))
++der_arg;
if(der_arg==tr.end(der))
throw ConsistencyException("integrate_by_parts: Derivative without argument encountered.");
tr.swap(der_arg, from);
tr.swap(der, der_arg);
multiply(t2prod->multiplier, -1);
tmp=der;
cleanup_dispatch(kernel, tr, tmp);
// Replace the original with the sum.
it=tr.move_ontop(it, sum.begin());
return result_t::l_applied;
}
// for(auto& pat: kernel.properties.pats) {
// if(pat.first->name()=="Coordinate") {
// std::cerr << pat.second->obj << std::endl;
// }
// }
}
else {
// Undo the split-off.
iterator tmp=fac;
cleanup_dispatch(kernel, tr, tmp);
}
}
++fac;
++pos;
}
return result_t::l_no_action;
}
Ex integrate_by_parts::wrap(iterator, sibling_iterator, sibling_iterator ) const
{
return Ex("");
}
|