File: join_gamma.cc

package info (click to toggle)
cadabra2 2.4.3.2-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 78,732 kB
  • sloc: ansic: 133,450; cpp: 92,064; python: 1,530; javascript: 203; sh: 184; xml: 182; objc: 53; makefile: 51
file content (324 lines) | stat: -rw-r--r-- 9,406 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

#include "Storage.hh"
#include "algorithms/join_gamma.hh"
#include "Exceptions.hh"
#include "Cleanup.hh"
#include "properties/Integer.hh"

using namespace cadabra;

join_gamma::join_gamma(const Kernel& kernel, Ex& tr_, bool e, bool g)
	: Algorithm(kernel, tr_), expand(e), use_generalised_delta_(g)
	{
	}

void join_gamma::regroup_indices_(sibling_iterator gam1, sibling_iterator gam2,
                                  unsigned int i, std::vector<Ex>& r1, std::vector<Ex>& r2)
	{
	unsigned int num1=tr.number_of_children(gam1);

	unsigned int len1=0;
	unsigned int len2=0;
	sibling_iterator g1=tr.begin(gam1);
	while(len1<num1-i) {
		r1.push_back(*g1);
		++g1;
		++len1;
		}
	sibling_iterator g2=tr.begin(gam2);
	while(g2!=tr.end(gam2)) {
		if(len2>=i)
			r2.push_back(*g2);
		++g2;
		++len2;
		}
	if(i>0) {
		g2=tr.begin(gam2);
		g1=tr.end(gam1);
		--g1;
		len1=0;
		for(len1=0; len1<i; ++len1) {
			r1.push_back(*g1);
			r2.push_back(*g2);
			--g1;
			++g2;
			}
		}
	}

void join_gamma::append_prod_(const std::vector<Ex>& r1, const std::vector<Ex>& r2,
                              unsigned int num1, unsigned int num2, unsigned int i, multiplier_t mult,
                              Ex& rep, iterator loc)
	{
	Ex::iterator gamma;

	bool hasgamma     =(num1-i>0 || num2-i>0);
	bool hasdelta     =(i>0);
	bool hasmoredeltas=(i>1 && !use_generalised_delta_);

	str_node::bracket_t subsbr=gamma_bracket_;
	if((hasgamma && hasdelta) || hasmoredeltas) {
		loc=rep.append_child(loc, str_node("\\prod", gamma_bracket_, (*loc).fl.parent_rel));
		loc->multiplier=rat_set.insert(mult).first;
		subsbr=str_node::b_none;
		}

	if(num1-i>0 || num2-i>0) {
		gamma=rep.append_child(loc, str_node(*gamma_name_->name, subsbr));
		for(unsigned int j=0; j<num1-i; ++j)
			rep.append_child(gamma, r1[j].begin());
		for(unsigned int j=0; j<num2-i; ++j)
			rep.append_child(gamma, r2[j].begin()); //str_node(*r2[j].name, str_node::b_none, r2[j].fl.parent_rel));
		if(!hasdelta)
			gamma->multiplier=rat_set.insert(mult).first;
		}

	Ex::iterator delt;
	if(use_generalised_delta_ && i>0) {
		if(gm1->metric.size()==0)
			throw ConsistencyException("The gamma matrix property does not contain metric information.");

		delt=rep.append_child(loc, gm1->metric.begin());
		delt->fl.bracket=subsbr;
		tr.erase_children(delt);
		if(!hasgamma)
			delt->multiplier=rat_set.insert(mult).first;
		}

	for(unsigned int j=0; j<i; ++j) {
		if(!use_generalised_delta_) {
			if(gm1->metric.size()==0)
				throw ConsistencyException("The gamma matrix property does not contain metric information.");

			delt=rep.append_child(loc, gm1->metric.begin());
			delt->fl.bracket=subsbr;
			tr.erase_children(delt);
			}

		if(tree_exact_less(&kernel.properties, r1[j+num1-i], r2[j+num2-i]) || use_generalised_delta_) {
			rep.append_child(delt, r1[j+num1-i].begin());
			rep.append_child(delt, r2[j+num2-i].begin());
			}
		else {
			rep.append_child(delt, r2[j+num2-i].begin());
			rep.append_child(delt, r1[j+num1-i].begin());
			}
		}
	}

bool join_gamma::can_apply(iterator st)
	{
	if(*st->name=="\\prod") {
		sibling_iterator fc=tr.begin(st);
		while(fc!=tr.end(st)) {
			gm1=kernel.properties.get<GammaMatrix>(fc);
			if(gm1) {
				std::string target=get_index_set_name(begin_index(fc));
				++fc;
				if(fc!=tr.end(st)) {
					gm2=kernel.properties.get<GammaMatrix>(fc);
					if(gm2) {
						if(target==get_index_set_name(begin_index(fc))) {
							only_expand.clear();
							// FIXME: handle only expansion into single term
							//							else if(it->is_rational()) {
							//								only_expand.push_back(to_long(*it->multiplier));
							return true;
							}
						else --fc;
						}
					}
				}
			++fc;
			}
		}
	return false;
	}

Algorithm::result_t join_gamma::apply(iterator& st)
	{
	assert(*st->name=="\\prod");
	sibling_iterator gam1=tr.begin(st);
	sibling_iterator gam2;
	while(gam1!=tr.end(st)) {
		const GammaMatrix *gm1=kernel.properties.get<GammaMatrix>(gam1);
		if(gm1) {
			gamma_name_=gam1;
			gam2=gam1;
			++gam2;
			if(gam2!=tr.end(st)) {
				const GammaMatrix *gm2=kernel.properties.get<GammaMatrix>(gam2);
				if(gm2)
					break;
				}
			}
		++gam1;
		}
	if(gam1==tr.end(st)) {
		st=tr.end();
		return result_t::l_error;
		}

	gamma_bracket_=gam2->fl.bracket;

	Ex rep;
	sibling_iterator top=rep.set_head(str_node("\\sum"));

	// Figure out the dimension of the gamma matrix.
	long number_of_dimensions=-1; // i.e. not known.
	index_iterator firstind=begin_index(gam1);
	while(firstind!=end_index(gam1)) {  // select the maximum value; FIXME: be more refined...
		const Integer *ipr=kernel.properties.get<Integer>(firstind, true);
		if(ipr) {
			if(ipr->difference.begin()->is_integer()) {
				number_of_dimensions=std::max(number_of_dimensions, to_long(*ipr->difference.begin()->multiplier));
				}
			}
		else {
			number_of_dimensions=-1;
			break;
			}
		++firstind;
		}
	if(number_of_dimensions!=-1) {
		firstind=begin_index(gam2);
		while(firstind!=end_index(gam2)) {  // select the maximum value; FIXME: be more refined...
			const Integer *ipr=kernel.properties.get<Integer>(firstind, true);
			if(ipr) {
				if(ipr->difference.begin()->is_integer()) {
					number_of_dimensions=std::max(number_of_dimensions, to_long(*ipr->difference.begin()->multiplier));
					}
				}
			else {
				number_of_dimensions=-1;
				break;
				}
			++firstind;
			}
		}

	// iterators over the two index ranges
	unsigned int num1=tr.number_of_children(gam1);
	unsigned int num2=tr.number_of_children(gam2);
	for(unsigned int i=0; i<=std::min(num1, num2); ++i) {
		// Ignore gammas with more than 'd' indices.
		if(number_of_dimensions>0) {
			if(num1+num2 > number_of_dimensions+2*i) {
				continue;
				}
			}

		if(only_expand.size()!=0) {
			if(std::find(only_expand.begin(), only_expand.end(), (int)(num1+num2-2*i))==only_expand.end())
				//			if((int)(num1+num2-2*i)!=only_expand)
				continue;
			}

		std::vector<Ex> r1, r2;
		regroup_indices_(gam1, gam2, i, r1, r2);

		multiplier_t mult=(combin::fact(multiplier_t(num1))*combin::fact(multiplier_t(num2)))/
		                  (combin::fact(multiplier_t(num1-i))*combin::fact(multiplier_t(num2-i))*combin::fact(multiplier_t(i)));

		//		debugout << "join: contracting " << i << " indices..." << std::endl;
		if(!expand) {
			append_prod_(r1, r2, num1, num2, i, mult, rep, top);
			}
		else {
			combin::combinations<Ex> c1(r1);
			combin::combinations<Ex> c2(r2);
			if(num1-i>0)
				c1.sublengths.push_back(num1-i);
			if(num2-i>0)
				c2.sublengths.push_back(num2-i);
			if(use_generalised_delta_ && i>0)
				c1.sublengths.push_back(i);
			else {
				for(unsigned int k=0; k<i; ++k)
					c1.sublengths.push_back(1); // the individual \deltas, antisymmetrise 'first' group
				}
			if(i>0)
				c2.sublengths.push_back(i); // the individual \deltas, do not antisymmetrise again.

			// Collect information about which indices to write in implicit antisymmetric form.
			// FIXME: this should move into combinatorics.hh
			//			iterator it=args_begin();
			//			while(it!=args_end()) {
			//				if(*it->name=="\\comma") {
			//					sibling_iterator cst=tr.begin(it);
			//					combin::range_t asymrange1, asymrange2;
			//					while(cst!=tr.end(it)) {
			//						for(unsigned int i1=0; i1<r1.size(); ++i1) {
			//							if(subtree_exact_equal(&kernel.properties, r1[i1].begin(), cst, 0)) {
			//								asymrange1.push_back(i1);
			//								break;
			//								}
			//							}
			//						for(unsigned int i2=0; i2<r2.size(); ++i2) {
			//							if(subtree_exact_equal(&kernel.properties, r2[i2].begin(), cst, 0)) {
			//								asymrange2.push_back(i2);
			//								break;
			//								}
			//							}
			//						++cst;
			//						}
			//					c1.input_asym.push_back(asymrange1);
			//					c2.input_asym.push_back(asymrange2);
			//					}
			//				++it;
			//				}

			c1.permute();
			c2.permute();

			for(unsigned int k=0; k<c1.size(); ++k) {
				for(unsigned int l=0; l<c2.size(); ++l) {
					if(interrupted) {
						// FIXME: handle interrupts gracefully.
						//						txtout << "join interrupted while producing GammaMatrix[" << num1+num2-2*i
						//								 << "] terms." << std::endl;
						interrupted=false;
						st=tr.end();
						return result_t::l_error;
						}

					int sgn=
					   combin::ordersign(c1[k].begin(), c1[k].end(), r1.begin(), r1.end())
					   *combin::ordersign(c2[l].begin(), c2[l].end(), r2.begin(), r2.end());
					multiplier_t mul=1;
					if(use_generalised_delta_)
						mul=combin::fact(i);

					append_prod_(c1[k], c2[l], num1, num2, i,
					             multiplier_t(c1.multiplier(k))*multiplier_t(c2.multiplier(l))*sgn*mul, rep, top);
					}
				}
			}
		}

	// Finally, replace the old product by the new sum of products.
	if(rep.number_of_children(rep.begin())==0) {
		multiply(st->multiplier,0);
		return result_t::l_applied;
		}
	else if(rep.number_of_children(rep.begin())==1) {
		rep.flatten(rep.begin());
		rep.erase(rep.begin());
		}

	if(tr.number_of_children(st)>2) { // erase one gamma, replace the other one
		multiply(rep.begin()->multiplier, *gam1->multiplier);
		multiply(rep.begin()->multiplier, *gam2->multiplier);
		tr.replace(tr.erase(gam1), rep.begin());
		}
	else {
		multiply(rep.begin()->multiplier, *st->multiplier);
		st = tr.replace(st, rep.begin());
		}

	cleanup_dispatch(kernel, tr, st);
	//   cleanup_expression(tr, st);
	//   cleanup_nests(tr, st);
	return result_t::l_applied;
	}