1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
#include "Cleanup.hh"
#include "algorithms/lr_tensor.hh"
#include "properties/Tableau.hh"
#include "properties/FilledTableau.hh"
using namespace cadabra;
lr_tensor::lr_tensor(const Kernel& k, Ex& tr)
: tab_basics(k, tr)
{
}
bool lr_tensor::can_apply(iterator it)
{
if(*it->name=="\\prod") {
sibling_iterator sib=tr.begin(it);
tab1=tr.end(it);
tab2=tr.end(it);
while(sib!=tr.end(it)) {
if(kernel.properties.get<Tableau>(sib)) {
// FIXME: test that tab2 has the same dimension!
if(tab1==tr.end(it))
tab1=sib;
else {
tab2=sib;
break;
}
}
++sib;
}
if(tab2!=tr.end(it)) return true;
sib=tr.begin(it);
tab1=tr.end(it);
tab2=tr.end(it);
while(sib!=tr.end(it)) {
if(kernel.properties.get<FilledTableau>(sib)) {
if(tab1==tr.end(it))
tab1=sib;
else {
tab2=sib;
break;
}
}
++sib;
}
if(tab2!=tr.end(it)) return true;
}
return false;
}
Algorithm::result_t lr_tensor::apply(iterator& it)
{
const Tableau *t1=kernel.properties.get<Tableau>(tab1);
const FilledTableau *f1=kernel.properties.get<FilledTableau>(tab1);
if(t1) do_tableau(it, t1->dimension);
else do_filledtableau(it, f1->dimension);
return result_t::l_applied;
}
// The format is \ftab{a,b,c}{d,e}{f}.
//
void lr_tensor::do_filledtableau(iterator& it, int dimension)
{
bool even_only=false;
bool singlet_rules=false;
// FIXME: put arguments back
// if(has_argument("EvenOnly"))
// even_only=true;
// if(has_argument("SingletRules"))
// singlet_rules=true;
uinttab_t one, two;
// For efficiency we store integers in the tableaux, not the actual
// Ex objects.
uinttabs_t prod;
num_to_it.clear();
tree_to_numerical_tab(tab1, one);
tree_to_numerical_tab(tab2, two);
yngtab::LR_tensor(one,two,dimension,prod.get_back_insert_iterator());
Ex rep;
iterator top=rep.set_head(str_node("\\sum"));
if(singlet_rules) tabs_to_singlet_rules(prod, top);
else tabs_to_tree(prod, top, tab1, even_only);
sibling_iterator sib=rep.begin(top);
while(sib!=rep.end(top)) {
sib->fl.bracket=str_node::b_round;
++sib;
}
tr.replace(tab1, rep.begin());
tr.erase(tab2);
cleanup_dispatch(kernel, tr, it);
}
void lr_tensor::do_tableau(iterator& it, int dimension)
{
bool even_only=false;
// FIXME: put arguments back in
// if(has_argument("EvenOnly"))
// even_only=true;
yngtab::tableau one, two;
yngtab::tableaux<yngtab::tableau> prod;
sibling_iterator sib=tr.begin(tab1);
while(sib!=tr.end(tab1)) {
one.add_row(to_long(*sib->multiplier));
++sib;
}
sib=tr.begin(tab2);
while(sib!=tr.end(tab2)) {
two.add_row(to_long(*sib->multiplier));
++sib;
}
yngtab::LR_tensor(one,two,dimension,prod.get_back_insert_iterator());
Ex rep;
iterator top=rep.set_head(str_node("\\sum"));
iterator tt;
yngtab::tableaux<yngtab::tableau>::tableau_container_t::iterator tabit=prod.storage.begin();
while(tabit!=prod.storage.end()) {
// Keep only the diagrams which lead to a singlet if requested.
if(even_only)
for(unsigned int r=0; r<(*tabit).number_of_rows(); ++r)
if((*tabit).row_size(r)%2!=0)
goto next_tab;
tt=tr.append_child(top, str_node(tab1->name));
multiply(tt->multiplier, tabit->multiplicity);
for(unsigned int r=0; r<(*tabit).number_of_rows(); ++r)
multiply(tr.append_child(tt, str_node("1"))->multiplier, (*tabit).row_size(r));
next_tab:
++tabit;
}
tr.replace(tab1, rep.begin());
tr.erase(tab2);
cleanup_dispatch(kernel, tr, it);
}
|