1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
|
#include <vector>
#include <set>
#include <numeric>
#include "Cleanup.hh"
#include "DisplayTerminal.hh"
#include "Functional.hh"
#include "Linear.hh"
#include "algorithms/meld.hh"
#include "properties/Coordinate.hh"
#include "properties/Derivative.hh"
#include "properties/Diagonal.hh"
#include "properties/ImplicitIndex.hh"
#include "properties/RiemannTensor.hh"
#include "properties/PartialDerivative.hh"
#include "properties/Symbol.hh"
#include "properties/Trace.hh"
#include "properties/Traceless.hh"
#include "properties/TableauBase.hh"
#include "properties/SelfNonCommuting.hh"
#include "properties/NonCommuting.hh"
using namespace cadabra;
meld::meld(const Kernel& kernel, Ex& ex, bool project_as_sum)
: Algorithm(kernel, ex)
, index_map(kernel)
, project_as_sum(project_as_sum)
{
}
meld::~meld()
{
}
bool meld::can_apply(iterator it)
{
return
can_apply_diagonals(it) ||
can_apply_traceless(it) ||
can_apply_cycle_traces(it) ||
can_apply_tableaux(it);
}
meld::result_t meld::apply(iterator& it)
{
result_t res = result_t::l_no_action;
if (can_apply_diagonals(it) && apply_diagonals(it)) {
res = result_t::l_applied;
cleanup_dispatch(kernel, tr, it);
}
if (can_apply_traceless(it) && apply_traceless(it)) {
res = result_t::l_applied;
cleanup_dispatch(kernel, tr, it);
}
if (can_apply_cycle_traces(it) && apply_cycle_traces(it)) {
res = result_t::l_applied;
cleanup_dispatch(kernel, tr, it);
}
//if (can_apply_side_relations(it) && apply_side_relations(it)) {
// res = result_t::l_applied;
// cleanup_dispatch(kernel, tr, it);
//}
if (can_apply_tableaux(it) && apply_tableaux(it)) {
res = result_t::l_applied;
cleanup_dispatch(kernel, tr, it);
}
return res;
}
// *_diagonals
// Remove Diagonal objects with numerical indices which are not all the same.
bool meld::can_apply_diagonals(iterator it)
{
auto diagonal = kernel.properties.get<Diagonal>(it);
return diagonal != nullptr;
}
bool meld::apply_diagonals(iterator it)
{
assert(kernel.properties.get<Diagonal>(it) != nullptr);
index_iterator indit = begin_index(it);
if (indit->is_rational()) {
index_iterator indit2 = indit;
++indit2;
while (indit2 != end_index(it)) {
if (indit2->is_rational() == false)
break;
if (indit2->multiplier != indit->multiplier) {
zero(it->multiplier);
return true;
}
++indit2;
}
}
return false;
}
// *_traceless
// // Remove any traces of traceless tensors.
bool meld::can_apply_traceless(iterator it)
{
auto traceless = kernel.properties.get<Traceless>(it);
return traceless != nullptr;
}
bool meld::apply_traceless(iterator it)
{
const Traceless* trl = kernel.properties.get<Traceless>(it);
unsigned int ihits = 0;
tree_exact_less_mod_prel_obj comp(&kernel.properties);
std::set<Ex, tree_exact_less_mod_prel_obj> countmap(comp);
index_iterator indit = begin_index(it);
while (indit != end_index(it)) {
bool incremented_now = false;
auto ind = kernel.properties.get<Indices>(indit, true);
if (ind) {
// The indexs need to be in the set for which the object is
// traceless (if specified, otherwise accept all).
if (trl->index_set_names.find(ind->set_name) != trl->index_set_names.end() || trl->index_set_names.size() == 0) {
incremented_now = true;
++ihits;
}
}
else incremented_now = true;
// Having no name is treated as having the right name
if (countmap.find(Ex(indit)) == countmap.end()) {
countmap.insert(Ex(indit));
}
else if (incremented_now) {
zero(it->multiplier);
return true;
}
++indit;
}
iterator parent = it;
if (tr.number_of_children(it) == 1 && !tr.is_head(it)) parent = tr.parent(it);
const Trace* trace = kernel.properties.get<Trace>(parent);
if (trace) {
int tmp;
auto impi = kernel.properties.get_with_pattern<ImplicitIndex>(it, tmp, "");
if (impi.first->explicit_form.size() > 0) {
// Does the explicit form have two more indices of the right type?
Ex::iterator eform = impi.first->explicit_form.begin();
unsigned int ehits = 0;
indit = begin_index(eform);
while (indit != end_index(eform)) {
auto ind = kernel.properties.get<Indices>(indit, true);
if (trl->index_set_names.find(ind->set_name) != trl->index_set_names.end() && ind->set_name == trace->index_set_name) ++ehits;
if (ehits - ihits > 1) {
zero(it->multiplier);
return true;
}
++indit;
}
}
}
return false;
}
// *_tableaux
bool meld::can_apply_tableaux(iterator it)
{
// This node can be a sum, but the rest of the tree must be strictly monomial. Also
// helps if there is an index lying around somewhere
bool found_index = false;
for (Ex::iterator beg = it.begin(), end = it.end(); beg != end; ++beg) {
if (*beg->name == "\\sum" || *beg->name == "\\equals" || *beg->name == "\\comma")
return false;
if (beg->is_index()) {
found_index = true;
beg.skip_children();
}
}
return found_index;
}
bool meld::apply_tableaux(iterator it)
{
if (*it->name == "\\equals") {
bool res = false;
Ex::sibling_iterator side = it.begin();
res |= apply_tableaux(side);
++side;
res |= apply_tableaux(side);
return res;
}
using namespace boost::numeric::ublas;
using matrix_type = matrix<mpq_class>;
using vector_type = vector<mpq_class>;
bool applied = false;
// Collect terms which have a matching structure (modulo index positions) into groups
std::vector<std::vector<ProjectedTerm>> patterns;
for (const auto& term : split_it(it, "\\sum")) {
ProjectedTerm projected_term(kernel, index_map, tr, term);
if (projected_term.ident.size() == 0)
continue;
bool found = false;
for (auto& pattern : patterns) {
if (pattern[0].compare(kernel, projected_term)) {
found = true;
pattern.push_back(projected_term);
break;
}
}
if (!found)
patterns.emplace_back(1, std::move(projected_term));
}
// Apply to each pattern group in turn
for (auto& terms : patterns) {
ScopedProgressGroup group(pm,
"Melding terms of form " + ex_to_string<DisplayTerminal>(kernel, terms[0].tensor),
terms.size());
// Initialize the linear solver; 'coeffs' is a square matrix of YP coefficients which grows
// every time we encounter a linearly-independent term. 'mapping' is a map between matrix
// rows and YP terms. 'adjforms' is a list of the complete decompositions (one for each column
// in 'coeffs') which we need to keep to ensure the solution we get by solving for 'coeffs', which
// does not contain the coefficients for every term in the YP, is an actual solution
linear::Solver<mpq_class> solver;
matrix_type coeffs;
std::vector<Adjform> mapping;
// Calculate the symmetrizers for this pattern group. If we are symmetrizing as a sum, then each
// new term in the sum is marked by the 'independent' flag being set
auto tabs = collect_tableaux(terms[0].tensor);
std::vector<symmetrizer_t> symmetrizers;
bool is_zero = collect_symmetries(tabs, symmetrizers);
if (is_zero) {
// The term is identically zero due to its tableaux, delete all and move
// onto next pattern
for (auto& term : terms) {
node_zero(term.it);
applied = true;
}
continue;
}
// Go through all terms in this pattern group one at a time
for (size_t term_idx = 0; term_idx < terms.size(); ++term_idx) {
group.progress();
auto& term = terms[term_idx];
symmetrize(term, symmetrizers);
if (term.projection.empty()) {
// Empty adjform means that the term is identically equal to 0
node_zero(term.it);
terms.erase(terms.begin() + term_idx);
--term_idx;
applied = true;
}
else {
// We need to try and express the current YP as a linear combination of previous YPs
// by solving "coeffs * x = y"
vector_type x, y;
bool has_solution = false;
if (coeffs.size1() > 0) {
y.resize(coeffs.size1());
for (size_t i = 0; i < mapping.size(); ++i)
y(i) = term.projection.get(mapping[i]);
x = solver.solve(y);
has_solution = true;
// x is guaranteed to be a solution as the 'coeffs' matrix is square and the columns
// are linearly dependent. To check whether it is actually a solution, go back over
// all the adjforms and ensure that the equation holds for each term
// To do this we keep track of iterators into each YP we have calculated. Different YPs
// will contain different terms (as they are a sparse storage), but as they are
// held in a std::map the terms are already sorted, so when constructing the vector
// which holds iterators into each YP we find which one has the smallest term.
// Then starting with this term we go through each iterator; if it points to this term
// then we accumulate the value * x[i] and increment the iterator, otherwise we skip
// over it. If the YP we just calculated contains this term then we check to make sure
// the value in the right hand equals this total, otherwise we check to make sure the total
// was 0. If we find a mismatch we set has_solution to false, otherwise we continue doing
// this until all the iterators have expired
std::vector<ProjectedAdjform::const_iterator> lhs_its;
ProjectedAdjform::const_iterator rhs_it = term.projection.begin();
Adjform cur_term = rhs_it->first;
// Populate the lhs_its vector and find the first (i.e. smallest) term
for (size_t i = 0; i < term_idx; ++i) {
auto it = terms[i].projection.begin();
if (it->first < cur_term)
cur_term = it->first;
lhs_its.push_back(it);
}
// Keep on iterating while there are unexpired iterators
size_t n_finished = 0;
while (n_finished < lhs_its.size()) {
// Calculate the sum on the left hand side. We simultaneously calculate the
// next term which we will examine by checking every time we increment an
// iterator if it is smaller than next_term (which we initialize to be the
// largest possible)
Adjform next_term;
next_term.push_coordinate(std::numeric_limits<Adjform::value_type>::max());
mpq_class sum = 0;
for (size_t i = 0; i < term_idx; ++i) {
if (lhs_its[i] != terms[i].projection.end() && lhs_its[i]->first == cur_term) {
sum += x(i) * lhs_its[i]->second;
++lhs_its[i];
if (lhs_its[i] == terms[i].projection.end())
++n_finished;
}
if (lhs_its[i] != terms[i].projection.end() && lhs_its[i]->first < next_term)
next_term = lhs_its[i]->first;
}
// Calculate the sum on the right hand side
mpq_class rhs_sum;
if (rhs_it == term.projection.end() || rhs_it->first != cur_term) {
rhs_sum = 0;
}
else {
rhs_sum = rhs_it->second;
++rhs_it;
}
// Early return if there is a mismatch
if (sum != rhs_sum) {
has_solution = false;
break;
}
// See if next smallest term is from the YP we just calculated
if (rhs_it != term.projection.end() && rhs_it->first < next_term)
next_term = rhs_it->first;
cur_term = next_term;
}
// If all the LHS iterators have expired, but there are still non-zero terms
// on the RHS (i.e. the iterator isn't expired) then this is a mismatch
if (rhs_it != term.projection.end())
has_solution = false;
}
if (has_solution) {
// If there is a solution, we add contributions from the current term to the
// scalar parts of all the other terms and set their 'changed' flag to true.
// Then zero and erase the current node; this is the only change to the actual
// tree we make right now, we will make the changes to the other nodes once we
// have accumulated all the contributions
for (size_t i = 0; i < term_idx; ++i) {
if (x(i) != 0) {
terms[i].changed = true;
Ex::iterator scalar_head = term.scalar.begin();
for (Ex::sibling_iterator beg = scalar_head.begin(), end = scalar_head.end(); beg != end; ++beg) {
auto new_term = terms[i].scalar.append_child(terms[i].scalar.begin(), (Ex::iterator)beg);
multiply(new_term->multiplier, x(i) * (*scalar_head->multiplier));
}
}
}
applied = true;
node_zero(term.it);
terms.erase(terms.begin() + term_idx);
--term_idx;
}
else {
// Expand the dimensions of the matrix by 1
coeffs.resize(coeffs.size1() + 1, coeffs.size2() + 1);
// Find a representative term for the YP we just calculated to add to the matrix, i.e.
// a term which isn't already in the 'mapping'. Once we find one, we fill in the bottom
// row (the coefficient this term has in the previously calculated YPs), the right
// hand column (the coefficient in of each term in 'mapping' in the YP we just
// calculated) and the bottom right element (the representative term in the new YP).
bool found = false;
for (const auto& kv : term.projection) {
auto pos = std::find(mapping.begin(), mapping.end(), kv.first);
if (pos == mapping.end()) {
// Fill in bottom row
for (size_t i = 0; i < term_idx; ++i)
coeffs(coeffs.size1() - 1, i) = terms[i].projection.get(kv.first);
// Fill in the righthand column
for (size_t i = 0; i < mapping.size(); ++i)
coeffs(i, coeffs.size2() - 1) = term.projection.get(mapping[i]);
// Fill in the bottom right element
coeffs(coeffs.size1() - 1, coeffs.size2() - 1) = term.projection.get(kv.first);
if (solver.factorize(coeffs)) {
mapping.push_back(kv.first);
found = true;
break;
}
}
}
// Shouldn't ever happen...if this error does get thrown then probably need a new way
// to calculate the representative terms
if (!found)
throw std::runtime_error("Could not find a suitable element to add to the matrix");
} // if (has_solution) {} else {}
} // if (term.projection.empty()) {} else {}
} //for (size_t term_idx = 0; term_idx < terms.size(); ++term_idx)
// Replace any nodes which have the 'changed' flag
for (auto& term : terms) {
if (term.changed) {
// Replace the node with a product of the scalar and tensor parts, then cleanup
tr.erase_children(term.it);
term.it = tr.replace(term.it, str_node("\\prod"));
tr.append_child(term.it, term.scalar.begin());
tr.append_child(term.it, term.tensor.begin());
cleanup_dispatch(kernel, tr, term.it);
}
}
} // for (auto& terms : patterns)
return applied;
}
bool it_is_scalar(const Kernel& kernel, Ex::iterator it)
{
bool is_scalar = true;
iter_indices term_indices(kernel.properties, it);
// size_t n_indices = term_indices.size();
for (const auto& idx : term_indices) {
auto symb = kernel.properties.get<Symbol>(idx, true);
auto coord = kernel.properties.get<Coordinate>(idx, true);
bool is_index = !(symb || coord || idx->is_integer());
if (is_index) {
is_scalar = false;
break;
}
}
return is_scalar;
}
meld::ProjectedTerm::ProjectedTerm(const Kernel& kernel, IndexMap& index_map, Ex& ex, Ex::iterator it)
: scalar("\\sum")
, tensor("\\prod")
, it(it)
, changed(false)
{
// Split the term up into a scalar part and a tensor part. The scalar part always starts
// with a \\sum node, as contributions will be added to it during the melding process,
// so we start by adding a \\prod node which will collect the scalar factors.
auto scalar_head = scalar.append_child(scalar.begin(), str_node("\\prod"));
// If the object is not a product, then it either a single scalar object or a single
// tensor object; detect which it is and move onto the appropriate part.
if (*it->name != "\\prod") {
bool is_scalar = it_is_scalar(kernel, it);
if (!is_scalar) {
auto term = tensor.append_child(tensor.begin(), it);
auto factor = scalar.append_child(scalar_head, str_node("1"));
multiply(factor->multiplier, *it->multiplier);
one(term->multiplier);
}
}
else {
// Object is a product of multiple terms.
// Loop through all terms in the product. If they have indices, then see if they
// can commute through the tensor bits in front of it to join other scalar terms
// out the front. Otherwise it will have to stay in the the tensor part of the
// expression
Ex_comparator comp(kernel.properties);
// Position of the last scalar value in the expression. Start this off with a
// sentinel "null iterator" so that we know we haven't met any scalar terms yet
Ex::iterator last_scalar(0);
for (Ex::sibling_iterator beg = it.begin(), end = it.end(); beg != end; ++beg) {
// Determine if it is scalar or tensor. We decide this by assuming it is a
// scalar, and then iterating through its indices checking for one which isn't
// a coordinate, symbol or integer. If we find a 'real' index, we know that it
// is a tensor and can stop checking the indices.
bool is_scalar = it_is_scalar(kernel, beg);
// If it is a scalar term, then attempt to commute it through the expression
// to join the rest of the scalar terms. If it can't commute through, then
// mark it as a tensor --- this ensures that it won't get moved anywhere.
if (is_scalar) {
if (last_scalar == Ex::iterator(0))
is_scalar = comp.can_move_to_front(ex, it, beg);
else
is_scalar = comp.can_move_adjacent(it, last_scalar, beg);
}
// Move scalar terms onto the scalar node, and tensor (including non-
// commuting tensors) onto the tensor node
if (is_scalar) {
auto term = scalar.append_child(scalar_head, (Ex::iterator)beg);
last_scalar = beg;
}
else {
tensor.append_child(tensor.begin(), (Ex::iterator)beg);
}
}
// If we had no scalar components, then create a numeric constant to
// hold the overall factor
if (scalar_head.number_of_children() == 0)
auto term = scalar.append_child(scalar_head, str_node("1"));
// Copy the overall numeric factor onto the scalar component
multiply(scalar_head->multiplier, *it->multiplier);
}
// Flatten/cleanup the expressions
Ex::iterator tensor_head = tensor.begin();
cleanup_dispatch(kernel, scalar, scalar_head);
cleanup_dispatch(kernel, tensor, tensor_head);
// Calculate the index structure of the tensor part.
auto ibeg = index_iterator::begin(kernel.properties, tensor.begin());
auto iend = index_iterator::end(kernel.properties, tensor.begin());
ident = Adjform(ibeg, iend, index_map, kernel);
}
// Return 'true' if the tensor parts are identical up to index structure.
bool meld::ProjectedTerm::compare(const Kernel& kernel, const ProjectedTerm& other)
{
auto head1 = tensor.begin(), head2 = other.tensor.begin();
if (head1->name != head2->name)
return false;
auto separated_by_derivative = [&kernel](const Ex& ex, Ex::iterator a, Ex::iterator b) {
// Climb the tree until we meet, returning true if we find a derivative along the way
Ex::iterator lca = ex.lowest_common_ancestor(a, b);
while (a != lca || b != lca) {
// Check for partial derivative
if (kernel.properties.get<Derivative>(a))
return true;
if (kernel.properties.get<Derivative>(b))
return true;
// Move nodes up a level
if (a != lca)
a = ex.parent(a);
if (b != lca)
b = ex.parent(b);
}
return false;
};
std::set<Ex::iterator> dummies1, dummies2;
Ex_comparator comp(kernel.properties);
Ex::iterator beg1 = head1.begin(), end1 = head1.end();
Ex::iterator beg2 = head2.begin(), end2 = head2.end();
for (; beg1 != end1 && beg2 != end2; ++beg1, ++beg2) {
auto match = comp.equal_subtree(beg1, beg2);
if (match == Ex_comparator::match_t::subtree_match) {
// Whole subtree is a match, skip children and continue
beg1.skip_children();
beg2.skip_children();
continue;
}
if (beg1->name == beg2->name && beg1->fl.parent_rel == beg2->fl.parent_rel) {
// Nodes are the same, continue but don't skip children
continue;
}
// No match is ok if the index structure is the same. Let's check that they
// are both indices
if (!beg1->is_index() || !beg2->is_index())
return false;
// We will not need to dig further into the tree if these match
beg1.skip_children();
beg2.skip_children();
// We begin by checking if they are coordinates,
// symbols or integers in which case they must match exactly
bool int1 = beg1->is_integer();
bool int2 = beg2->is_integer();
bool coord1 = kernel.properties.get<Coordinate>(beg1, true);
bool coord2 = kernel.properties.get<Coordinate>(beg2, true);
bool sym1 = kernel.properties.get<Symbol>(beg1, true);
bool sym2 = kernel.properties.get<Symbol>(beg2, true);
if ((int1 && int2) || (coord1 && coord2) || (sym1 && sym2))
return true;
if ((int1 != int2) || (coord1 != coord2) || (sym1 != sym2))
return false;
// Okay, we will treat these as indices of some sort now. First we check for
// Indices property to check the sets
auto iprop1 = kernel.properties.get<Indices>(beg1);
auto iprop2 = kernel.properties.get<Indices>(beg2);
// If neither is in a set then they are both free and that is fine
if (!iprop1 && !iprop2)
continue;
// If one is a set but the other isn't then its a mismatch
if ((bool)iprop1 != (bool)iprop2)
return false;
// If they are both in sets but they're different sets then its a mismatch
if (iprop1->set_name != iprop2->set_name)
return false;
// Ok - they're both in the same set. If they are at the same height then that
// is fine
if (beg1->fl.parent_rel == beg2->fl.parent_rel)
continue;
// They are at different heights. If they're free then thats fine
if (iprop1->position_type == Indices::position_t::free)
continue;
// If they are independent then thats a mismatch
if (iprop1->position_type == Indices::position_t::independent)
return false;
// Fixed is okay if they are in a dummy pair which isn't separated by a derivative
if (iprop1->position_type == Indices::position_t::fixed) {
bool beg1isdummy = false, beg2isdummy = false;
if (dummies1.find(beg1) != dummies1.end()) {
beg1isdummy = true;
dummies1.erase(dummies1.find(beg1));
}
if (dummies2.find(beg2) != dummies2.end()) {
beg2isdummy = true;
dummies2.erase(dummies2.find(beg2));
}
// Secondly we iterate through the rest of the tree to check for a match
if (!beg1isdummy) {
Ex::iterator search = beg1;
search.skip_children();
++search;
while (search != end1) {
comp.clear();
if (comp.equal_subtree(beg1, search, Ex_comparator::useprops_t::never, true) == Ex_comparator::match_t::subtree_match) {
// Found dummy, first we check whether it is separated by a derivative
if (!separated_by_derivative(tensor, beg1, search)) {
// Valid dummy, add this iterator to dummies so we can find it later
dummies1.insert(search);
beg1isdummy = true;
}
}
if (search->is_index())
search.skip_children();
++search;
}
}
if (!beg2isdummy) {
Ex::iterator search = beg2;
search.skip_children();
++search;
while (search != end2) {
if (comp.equal_subtree(beg2, search) == Ex_comparator::match_t::subtree_match) {
// Found dummy, first we check whether it is separated by a derivative
Ex::iterator tmp;
if (!separated_by_derivative(other.tensor, beg2, search)) {
// Valid dummy, add this iterator to dummies so we can find it later
dummies2.insert(search);
beg2isdummy = true;
}
}
if (search->is_index())
search.skip_children();
++search;
}
}
// In case we've forgotten what we were meant to be doing here; the two indices have different
// heights but this is ok if they are both in valid dummy pairs; so we return false if that
// is not the case
if (!beg1isdummy || !beg2isdummy)
return false;
}
}
// One of the iterators has expired, check that both have
return beg1 == end1 && beg2 == end2;
}
std::vector<meld::tab_t> meld::collect_tableaux(Ex& ex) const
{
std::vector<tab_t> tabs;
size_t total_indices = 0;
for (const auto& term : split_it(ex.begin(), "\\prod")) {
auto tb = kernel.properties.get<TableauBase>(term);
if (tb) {
if (project_as_sum && !tabs.empty())
throw std::runtime_error("meld cannot project_as_sum the product of tensors with non-trivial tableau shapes");
size_t n_tabs = tb->size(kernel.properties, ex, term);
for (size_t i = 0; i < n_tabs; ++i) {
auto tab = tb->get_tab(kernel.properties, ex, term, i);
for (auto& cell : tab)
cell += total_indices;
tabs.push_back(std::move(tab));
}
// Are we a derivative of a Riemann tensor?
if (n_tabs == 1) {
Ex::iterator child = term;
size_t depth = 0;
while (kernel.properties.get<Derivative>(child)) {
child = child.begin();
++child;
++depth;
}
if (kernel.properties.get<RiemannTensor>(child)) {
// Append indices to top row of Riemann tableau
for (size_t k = 0; k < depth; ++k) {
tabs.back().add_box(0, total_indices + k);
}
}
}
}
iter_indices indices(kernel.properties, term);
total_indices += indices.size();
}
return tabs;
}
bool meld::collect_symmetries(const std::vector<tab_t>& tabs, std::vector<symmetrizer_t>& symmetrizers) const
{
if (project_as_sum)
return collect_symmetries_as_sum(tabs, symmetrizers);
else
return collect_symmetries_as_product(tabs, symmetrizers);
}
bool meld::collect_symmetries_as_product(const std::vector<tab_t>& tabs, std::vector<symmetrizer_t>& symmetrizers) const
{
// We collect all the symmetrizers and antisymmerizers into a list
// to end up with e.g.
// S(01) A(02) S(34) A(57) A(68) S(56) S(78)
// We then apply operations to this list by commuting symmetrizers
// through each other and collecting any symmetrizers which
// cancel each other
for (const auto& tab : tabs) {
for (size_t col = 0; col < tab.row_size(0); ++col) {
if (tab.column_size(col) > 1) {
symmetrizer_t sym(true, true);
sym.indices.assign(tab.begin_column(col), tab.end_column(col));
std::sort(sym.indices.begin(), sym.indices.end());
symmetrizers.push_back(std::move(sym));
}
}
for (size_t row = 0; row < tab.number_of_rows(); ++row) {
if (tab.row_size(row) > 1) {
symmetrizer_t sym(false, true);
sym.indices.assign(tab.begin_row(row), tab.end_row(row));
std::sort(sym.indices.begin(), sym.indices.end());
symmetrizers.push_back(std::move(sym));
}
}
}
// For each symmetrizer i, try and commute it though the symmetrizers to the right and left
// of it to try and find simplifications
for (size_t i = 0; i < symmetrizers.size(); ++i) {
auto& lhs = symmetrizers[i].indices;
// Commute right
for (size_t j = i + 1; j < symmetrizers.size(); ++j) {
// Calculate intersection and union of the two terms
auto& rhs = symmetrizers[j].indices;
std::vector<size_t> uni, inter;
std::set_union(lhs.begin(), lhs.end(), rhs.begin(), rhs.end(), std::back_inserter(uni));
std::set_intersection(lhs.begin(), lhs.end(), rhs.begin(), rhs.end(), std::back_inserter(inter));
bool can_commute = inter.empty();
if (symmetrizers[i].antisymmetric == symmetrizers[j].antisymmetric) {
// Both symmetric/antisymmetric: can be combined if one is a subset of the other.
if (lhs == uni || rhs == uni) {
lhs = uni;
symmetrizers.erase(symmetrizers.begin() + j);
--j;
}
}
else {
// One is symmetric and the other antisymmetric: if they overlap by more than one index
// then the whole projection is identically zero
if (inter.size() > 1) {
return true;
}
}
// If these two terms do not commute then move lhs on
if (!can_commute) {
symmetrizers[i].independent = false;
break;
}
}
// Commute left
for (size_t j = i - 1; j != (size_t)-1; --j) {
// Calculate intersection and union of the two terms
auto& rhs = symmetrizers[j].indices;
std::vector<size_t> uni, inter;
std::set_union(lhs.begin(), lhs.end(), rhs.begin(), rhs.end(), std::back_inserter(uni));
std::set_intersection(lhs.begin(), lhs.end(), rhs.begin(), rhs.end(), std::back_inserter(inter));
bool can_commute = inter.empty();
if (symmetrizers[i].antisymmetric == symmetrizers[j].antisymmetric) {
// Both symmetric/antisymmetric: can be combined if one is a subset of the other.
if (lhs == uni || rhs == uni) {
lhs = uni;
symmetrizers.erase(symmetrizers.begin() + j);
++j;
--i;
}
}
else {
// One is symmetric and the other antisymmetric: if they overlap by more than one index
// then the whole projection is identically zero
if (inter.size() > 1) {
return true;
}
}
// If these two terms do not commute then move lhs on
if (!can_commute) {
symmetrizers[i].independent = false;
break;
}
}
}
return false;
}
bool meld::collect_symmetries_as_sum(const std::vector<tab_t>& tabs, std::vector<symmetrizer_t>& symmetrizers) const
{
auto reduce_tab = [](tab_t tab) {
// Get the row with the biggest element
size_t n_cells = 0;
size_t greatest_row = 0;
int greatest_elem = -1;
for (size_t row = 0; row < tab.number_of_rows(); ++row) {
n_cells += tab.row_size(row);
int back = (int)tab(row, tab.row_size(row) - 1);
if (back > greatest_elem) {
greatest_elem = back;
greatest_row = row;
}
}
tab.remove_box(greatest_row);
return tab;
};
auto is_trivial = [](const tab_t& tab) {
return std::distance(tab.begin(), tab.end()) <= 2;
};
std::vector<mpz_class> norms;
for (const auto& tab : tabs) {
// Check tableau is row-standard
for (size_t row = 0; row < tab.number_of_rows(); ++row) {
int prev = -1;
for (auto beg = tab.begin_row(row), end = tab.end_row(row); beg != end; ++beg) {
int next = *beg;
if (next < prev)
throw ConsistencyException("Trying to symmetrize non-standard tableau as sum");
prev = next;
}
}
// Check tableau is column-standard
for (size_t col = 0; col < tab.row_size(0); ++col) {
int prev = -1;
for (auto beg = tab.begin_column(col), end = tab.end_column(col); beg != end; ++beg) {
int next = *beg;
if (next < prev)
throw ConsistencyException("Trying to symmetrize non-standard tableau as sum");
prev = next;
}
}
// Create the hermitian product as described in Theorem 6 of arXiv:1307.6147
// We start by creating a list 'hermprod' containing the original tableau
// and a second list 'is_decomposed' which contains a flag for whether the ith term
// in hermprod has been decomposed. We then iterate through all the elements of hermprod
// applying Y_n -> P_{n-1} Y_n P_{n-1} until no P's are left in the list.
std::vector<tab_t> hermprod(1, tab);
std::vector<bool> is_decomposed(1, is_trivial(tab));
for (int i = 0; i < (int)hermprod.size(); ++i) {
if (!is_decomposed[i]) {
// Sandwich hermprod[i] between reduced
is_decomposed[i] = true;
auto reduced = reduce_tab(hermprod[i]);
auto triv = is_trivial(reduced);
hermprod.insert(hermprod.begin() + i + 1, reduced);
is_decomposed.insert(is_decomposed.begin() + i + 1, triv);
hermprod.insert(hermprod.begin() + i, reduced);
is_decomposed.insert(is_decomposed.begin() + i, triv);
--i;
}
}
// Collect the symmetrizers. We begin with an object which has
// independent=true and indices contains one element, which is the normalisation
// of the overall product. We don't actually fill in the normalisation now, as we will first
// divide out by the GCD so we wont run the risk of overflowing int
symmetrizers.emplace_back(false, true);
mpz_class norm = 1;
for (const auto& herm : hermprod) {
norm *= herm.hook_length_prod();
for (size_t col = 0; col < herm.row_size(0); ++col) {
if (herm.column_size(col) > 1) {
symmetrizer_t sym(true, false);
sym.indices.assign(herm.begin_column(col), herm.end_column(col));
std::sort(sym.indices.begin(), sym.indices.end());
symmetrizers.push_back(std::move(sym));
}
}
for (size_t row = 0; row < herm.number_of_rows(); ++row) {
if (herm.row_size(row) > 1) {
symmetrizer_t sym(false, false);
sym.indices.assign(herm.begin_row(row), herm.end_row(row));
std::sort(sym.indices.begin(), sym.indices.end());
symmetrizers.push_back(std::move(sym));
}
}
}
norms.push_back(norm);
}
// Get the GCD of the norms
mpz_class gcd = 1;
if (norms.size() > 1) {
mpz_gcd(gcd.get_mpz_t(), norms[0].get_mpz_t(), norms[1].get_mpz_t());
for (size_t i = 2; i < norms.size(); ++i)
mpz_gcd(gcd.get_mpz_t(), gcd.get_mpz_t(), norms[i].get_mpz_t());
}
size_t pos = 0;
for (auto& symmetrizer : symmetrizers) {
if (symmetrizer.independent) {
mpz_class norm = norms[pos] / gcd;
symmetrizer.indices.push_back(norm.get_si());
++pos;
}
}
return false;
}
void meld::symmetrize(ProjectedTerm& projterm, const std::vector<symmetrizer_t>& symmetrizers)
{
if (project_as_sum)
return symmetrize_as_sum(projterm, symmetrizers);
else
return symmetrize_as_product(projterm, symmetrizers);
}
void meld::symmetrize_as_product(ProjectedTerm& projterm, const std::vector<symmetrizer_t>& symmetrizers)
{
Adjform seed = projterm.ident;
int seed_value = 1;
if (seed.empty())
throw std::runtime_error("symmetrize_as_product received term with no indices");
// Keep track of which symmetrizers we have applied. Note: do not mistake this for us applying
// the symmetrizers out-of-order: we will first apply the 'independent' symmetrizers which
// commute with every other symmetrizer so really this is an alternative to reordering the
// elements in the 'symmetrizers' vector by commuting elements through each other
std::vector<bool> applied(symmetrizers.size(), false);
// Calculate the independent symmetrizers (those which have no overlap with any other symmetrizer).
// This means that it needs the 'independent' flag AND no dummy indices. Then use these to sort the
// independent indices in seed and possibly pick up a factor of -1.
for (size_t i = 0; i < symmetrizers.size(); ++i) {
bool independent =
symmetrizers[i].independent &&
std::all_of(symmetrizers[i].indices.begin(), symmetrizers[i].indices.end(),
[seed](size_t i) { return seed[i] < 0; });
if (independent) {
Adjform indices;
for (const auto& index : symmetrizers[i].indices)
indices.push_coordinate(seed[index]); // push_coordinate is more efficient if we know there are no dummy indices
std::vector<Adjform::value_type> sorted_indices(indices.begin(), indices.end());
std::sort(sorted_indices.begin(), sorted_indices.end());
for (size_t j = 0; j < (size_t)indices.size(); ++j) {
auto idx1 = indices[j];
auto idx2 = sorted_indices[j];
if (idx1 != idx2) {
if (symmetrizers[i].antisymmetric)
seed_value *= -1;
auto pos1 = seed.index_of(idx1);
auto pos2 = seed.index_of(idx2);
seed.swap(pos1, pos2);
indices.swap(j, indices.index_of(idx2));
}
}
applied[i] = true;
}
}
// Shared-dummy optimization: see if the symmetrizer at the front has cancellations (a la
// logic in symmetrize_as_product) taking into account dummy positions. We can only do this
// with the front of the symmetriers as after this the dummies will be mixed up. We rewrite
// the symmetrizers replacing index positions with their dummy equivalents if this points to
// a lower slot and then look for cancellations.
// Find first two unapplied terms
auto first_not_applied = std::find(applied.begin(), applied.end(), false);
auto second_not_applied = first_not_applied == applied.end()
? applied.end()
: std::find(first_not_applied + 1, applied.end(), false);
if (second_not_applied != applied.end()) {
auto remove_dummies = [seed](Adjform::value_type idx) { return (seed[idx] < idx && seed[idx] >= 0) ? (size_t)seed[idx] : idx; };
// Remove dummies from first term
size_t first_idx = std::distance(applied.begin(), first_not_applied);
const auto& first = symmetrizers[first_idx];
std::vector<size_t> first_nd(first.indices.size());
std::transform(first.indices.begin(), first.indices.end(), first_nd.begin(), remove_dummies);
std::sort(first_nd.begin(), first_nd.end());
// Remove dummies from second term
size_t second_idx = std::distance(applied.begin(), second_not_applied);
const auto& second = symmetrizers[second_idx];
std::vector<size_t>second_nd(second.indices.size());
std::transform(second.indices.begin(), second.indices.end(), second_nd.begin(), remove_dummies);
std::sort(second_nd.begin(), second_nd.end());
// Get intersection and union
std::vector<size_t> uni, inter;
std::set_union(first_nd.begin(), first_nd.end(), second_nd.begin(), second_nd.end(), std::back_inserter(uni));
std::set_intersection(first_nd.begin(), first_nd.end(), second_nd.begin(), second_nd.end(), std::back_inserter(inter));
if (first.antisymmetric == second.antisymmetric) {
// Both symmetric/antisymmetric: can be combined if one is a subset of the other.
if (first_nd == uni || second_nd == uni) {
if (first_nd.size() < second_nd.size())
*first_not_applied = true;
else
*second_not_applied = true;
}
}
else {
// One is symmetric and the other antisymmetric: if they overlap by more than one index
// then the whole projection is identically zero
if (inter.size() > 1) {
return;
}
}
}
// Seed the symmetrized expression
projterm.projection.add(seed, seed_value);
// Go over the rest of the symmetrizers and apply them as normal
for (size_t i = 0; i < symmetrizers.size(); ++i) {
if (!applied[i]) {
projterm.projection.apply_young_symmetry(symmetrizers[i].indices, symmetrizers[i].antisymmetric);
}
}
// Symmetrize in identical tensors and we're done!
symmetrize_idents(projterm);
}
void meld::symmetrize_as_sum(ProjectedTerm& projterm, const std::vector<symmetrizer_t>& symmetrizers)
{
ProjectedAdjform cur;
Adjform seed = projterm.ident;
// Get the product of all normalizations
ProjectedAdjform::integer_type overall_norm = 1;
for (size_t i = 0; i < symmetrizers.size(); ++i) {
if (symmetrizers[i].independent)
overall_norm *= symmetrizers[i].indices[0];
}
for (size_t i = 0; i < symmetrizers.size(); ++i) {
if (symmetrizers[i].independent) {
// The independent flag here tells us that this just contains the normalisation
// for the following product of symmetrizers. To keep things integer, we multiply by
// the overall normalisation and then divide by the normalization for this group
projterm.projection += cur;
cur.clear();
cur.set(seed, overall_norm / symmetrizers[i].indices[0]);
}
else {
cur.apply_young_symmetry(symmetrizers[i].indices, symmetrizers[i].antisymmetric);
}
}
projterm.projection += cur;
symmetrize_idents(projterm);
}
// Store information about how to symmetrize in identical tensors
struct Ident {
Ident() : n_indices(0) {}
size_t n_indices;
std::vector<Ex::iterator> its;
std::vector<size_t> positions;
std::vector<std::vector<int>> generate_commutation_matrix(const Kernel& kernel) const
{
Ex_comparator comp(kernel.properties);
std::vector<std::vector<int>> cm(its.size(), std::vector<int>(its.size()));
for (size_t i = 0; i < its.size(); ++i) {
for (size_t j = 0; j < its.size(); ++j) {
if (i == j)
continue;
cm[i][j] = comp.can_move_adjacent(Ex::parent(its[i]), its[i], its[j]) * comp.can_swap(its[i], its[j], Ex_comparator::match_t::subtree_match);
}
}
return cm;
}
};
void meld::symmetrize_idents(ProjectedTerm& projterm)
{
// Symmetrize in identical tensors
auto prod = projterm.tensor.begin();
if (*prod->name != "\\prod")
return;
// Map holding hash of tensor -> { number of indices, {pos1, pos2, ...} }
std::map<nset_t::iterator, Ident, nset_it_less> idents;
size_t pos = 0;
for (Ex::sibling_iterator beg = prod.begin(), end = prod.end(); beg != end; ++beg) {
auto elem = idents.insert({ beg->name, {} });
auto& ident = elem.first->second;
if (elem.second) {
// Insertion took place, count indices
iter_indices indices(kernel.properties, beg);
ident.n_indices = indices.size();
}
ident.its.push_back(beg);
ident.positions.push_back(pos);
pos += ident.n_indices;
}
for (const auto& ident : idents) {
if (ident.second.positions.size() != 1) {
projterm.projection.apply_ident_symmetry(
ident.second.positions, ident.second.n_indices,
ident.second.generate_commutation_matrix(kernel));
}
}
}
// Trace routines
bool meld::can_apply_cycle_traces(iterator it)
{
auto trace = kernel.properties.get<Trace>(it);
return trace && *it.begin()->name == "\\sum";
}
struct CycledTerm
{
CycledTerm(Ex::iterator it, IndexMap& index_map, const Kernel& kernel)
: commuting("\\sum")
, noncommuting("\\prod")
, it(it)
, n_terms(0)
, changed(false)
{
if (*it->name != "\\prod") {
// A single term has nothing to commute with, so commutes by default
auto term = commuting.append_child(commuting.begin(), it);
}
else {
// The 'commuting' ex is a sum node, the first child of which is a product node representing
// the commuting terms of 'it' (including the numeric prefactor of it).
// If we compare against other CycledTerms and find a match, then
// we merge the two sum nodes of the commuting term together and set the changed flag to true.
auto commuting_head = commuting.append_child(commuting.begin(), str_node("\\prod"));
multiply(commuting_head->multiplier, *it->multiplier);
// Iterate through all terms in the product to see the they are commuting or noncommuting
for (Ex::sibling_iterator beg = it.begin(), end = it.end(); beg != end; ++beg) {
auto nc = kernel.properties.get<NonCommuting>(beg);
auto snc = kernel.properties.get<SelfNonCommuting>(beg);
if (nc || snc) {
// Non-commuting term: append it to the noncommuting Ex, increment the total number of
// terms counter and then loop through its indices appending them to the Adjform we hold
// We also count the number of indices each term has and add this information to the
// 'index_groups' member so that cycle() knows how many times to cycle the Adjform
auto term = noncommuting.append_child(noncommuting.begin(), (Ex::iterator)beg);
++n_terms;
size_t n_indices = 0;
for (auto& index : iter_indices(kernel.properties, term)) {
indices.push(index, index_map, kernel);
++n_indices;
}
index_groups.push_back(n_indices);
}
else {
auto term = commuting.append_child(commuting_head, (Ex::iterator)beg);
}
}
cleanup_dispatch(kernel, commuting, commuting_head);
}
}
void cycle(const Kernel& kernel)
{
// Rotate noncommuting
Ex::iterator head = noncommuting.begin();
Ex::sibling_iterator first = head.begin(), last = head.end();
--last;
noncommuting.move_before(first, last);
// Rotate indices
if (index_groups.size() > 1) {
indices.rotate(index_groups.back());
std::rotate(index_groups.begin(), index_groups.end() - 1, index_groups.end());
}
}
bool compare(const Kernel& kernel, const CycledTerm& other)
{
if (indices != other.indices)
return false;
Ex_comparator comp(kernel.properties);
auto res = comp.equal_subtree(noncommuting.begin(), other.noncommuting.begin());
return res == Ex_comparator::match_t::subtree_match ||
res == Ex_comparator::match_t::match_index_less ||
res == Ex_comparator::match_t::match_index_greater;
}
Ex commuting, noncommuting; // Commuting and non-commuting parts of the expression
Adjform indices; // Index structure of the groups
std::vector<size_t> index_groups; // Number of indices in each 'noncommuting' term
Ex::iterator it; // The iterator this object is constructed from
size_t n_terms; // Number of non-commuting terms
bool changed; // Flag to be set if the commuting part of this object is modified but 'it' is not updated
};
bool meld::apply_cycle_traces(iterator it)
{
assert(*it.begin()->name == "\\sum");
bool applied = false;
std::vector<CycledTerm> terms;
for (const auto& term : split_it(it.begin(), "\\sum"))
terms.emplace_back(term, index_map, kernel);
for (size_t i = 0; i < terms.size(); ++i) {
for (size_t j = i + 1; j < terms.size(); ++j) {
if (terms[i].n_terms != terms[j].n_terms)
continue;
for (size_t k = 0; k <= terms[j].n_terms; ++k) {
if (terms[i].compare(kernel, terms[j])) {
Ex::iterator head = terms[j].commuting.begin();
for (Ex::sibling_iterator beg = head.begin(), end = head.end(); beg != end; ++beg)
terms[i].commuting.append_child(terms[i].commuting.begin(), (Ex::iterator)beg);
node_zero(terms[j].it);
applied = true;
terms[i].changed = true;
terms.erase(terms.begin() + j);
--j;
break;
}
terms[j].cycle(kernel);
}
}
}
for (const auto& term : terms) {
if (term.changed) {
tr.erase_children(term.it);
it = tr.replace(term.it, str_node("\\prod"));
tr.append_child(it, term.commuting.begin());
tr.append_child(it, term.noncommuting.begin());
cleanup_dispatch(kernel, tr, it);
}
}
return applied;
}
//bool meld::can_apply_side_relations(iterator it)
//{
// return *it->name == "\\sum";
//}
//
//
//std::vector<Ex> collect_bases(Ex::iterator it)
//{
// assert(*it->name == "\\equals");
// std::vector<Ex> terms;
//
// // Get terms on left hand side
// Ex::sibling_iterator side = it.begin();
// for (const auto& term : split_sum(side)) {
// terms.push_back(term);
// }
//
// // Get terms on right hand side
// ++side;
// for (const auto& term : split_sum(side)) {
// terms.push_back(term);
// multiply(terms.back().begin()->multiplier, -1);
// }
//
// std::vector<Ex> bases;
// for (size_t i = 0; i < terms.size(); ++i) {
// Ex basis("\\equals");
// basis.append_child(basis.begin(), terms[i].begin());
// Ex sum("\\sum");
// multiply(sum.begin()->multiplier, mpq_class(1, 2));
// for (size_t j = 0; j < terms.size(); ++j)
// sum.append_child(sum.begin(), terms[j].begin());
// basis.append_child(basis.begin(), sum.begin());
// bases.push_back(basis);
// }
//
// return bases;
//}
//
//bool meld::apply_side_relations(iterator it)
//{
// return false;
// assert(*it->name == "\\sum");
//
// std::vector<Ex> bases;
// if (*side_relations.begin()->name == "\\comma") {
// auto top = side_relations.begin();
// for (Ex::sibling_iterator beg = top.begin(), end = top.end(); beg != end; ++beg) {
// auto subbases = collect_bases(beg);
// bases.insert(bases.end(), subbases.begin(), subbases.end());
// }
// }
// else if (*side_relations.begin()->name == "\\equals") {
// bases = collect_bases(side_relations.begin());
// }
// else {
// throw std::runtime_error("meld: side_relations is not a relation or comma separated list of relations");
// }
//
// // Iterate through all terms in 'it' calculating their projections in terms of side relations
// std::vector<std::tuple<Ex::iterator>> projected_terms;
// for (const auto& term : split_sum(it)) {
// // Loop through the bases to find a match
// for (const auto& basis : bases) {
// auto lhs = basis.begin().begin();
// if (*lhs->name == "\\prod") {
// // If term is not a product then it can't match
// if (*term->name != "\\prod")
// continue;
// // If it is a product, then iterate through the terms hoping to find a range of
// // terms which matches 'basis'
// auto curterm = lhs.begin();
// Ex::iterator matchpos = term.end();
// for (Ex::sibling_iterator beg = term.begin(), end = term.end(); beg != end; ++beg) {
// if (similar_form(curterm, beg)) {
// ++curterm;
// if (curterm == lhs.end()) {
// auto next = beg;
// ++next;
// if (next == end) {
// matchpos = beg;
// break;
// }
// }
// }
// else {
// curterm = lhs.begin();
// }
// }
// if (matchpos != term.end()) {
// // Found a matching basis term
// Ex prefactor("\\prod"), base("\\prod");
// multiply(prefactor.begin()->multiplier, *term->multiplier);
// Ex* on = &prefactor;
// for (Ex::sibling_iterator beg = term.begin(), end = term.end(); beg != end; ++beg) {
// if (curterm == beg)
// on = &base;
// on->append_child(beg);
// }
// std::map<std::pair<Ex::iterator, Adjform>, mpq_class> projection;
// ++lhs;
// for (const auto& projterm : split_sum(lhs))
// projection[{projterm, Adjform(projterm, index_map, kernel)}] = 1;
// }
// }
// }
// }
// }
|