1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
|
#include "algorithms/order.hh"
#include "Combinatorics.hh"
using namespace cadabra;
order::order(const Kernel& k, Ex& tr, Ex& objs, bool ac)
: Algorithm(k, tr), objects(objs), anticomm(ac)
{
}
bool order::can_apply(iterator st)
{
if(*(st->name)!="\\prod")
return(is_single_term(st));
return true;
}
Algorithm::result_t order::apply(iterator& st)
{
result_t res=result_t::l_no_action;
prod_wrap_single_term(st);
std::vector<unsigned int> locs;
if(locate_object_set(objects, tr.begin(st), tr.end(st), locs)) {
if(!(std::is_sorted(locs.begin(), locs.end()))) {
res=result_t::l_applied;
std::vector<unsigned int> ordered(locs);
std::sort(ordered.begin(), ordered.end());
if(anticomm) {
int osign=combin::ordersign(ordered.begin(), ordered.end(), locs.begin(), locs.end());
if(osign!=1) {
multiply(st->multiplier, osign);
}
}
// \comma{A}{B}}
sibling_iterator orig_st=objects.begin(objects.begin());
for(unsigned int i=0; i<ordered.size(); ++i) {
iterator dest_st=tr.begin(st);
for(unsigned int k=0; k<ordered[i]; ++k)
++dest_st;
if((*orig_st->name).size()==0)
tr.replace(dest_st, tr.begin(orig_st));
else
tr.replace(dest_st, orig_st);
++orig_st;
}
res=result_t::l_applied;
}
}
prod_unwrap_single_term(st);
return res;
}
|