File: projweyl.tex

package info (click to toggle)
cadabra2 2.4.3.2-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 78,732 kB
  • sloc: ansic: 133,450; cpp: 92,064; python: 1,530; javascript: 203; sh: 184; xml: 182; objc: 53; makefile: 51
file content (28 lines) | stat: -rw-r--r-- 1,005 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
\cdbalgorithm{projweyl}{}

Projects an expression onto Weyl spinors of positive chirality (this
algorithm only works in even dimensions). On such a subspace, we have
\begin{equation}
\label{e:g10toeps}
\Gamma^{r_1 \cdots r_{d}}\Big|_{\text{Weyl}} = \frac{1}{\sqrt{-g}}\epsilon^{r_1\cdots
r_{d}}
\, ,\quad \epsilon^{0\cdots (d-1)} = +1\, ,
\end{equation}
and therefore all gamma matrices with more than $d/2$ indices can be
converted to their ``dual'' gamma matrices. By repeated contraction
of~\eqref{e:g10toeps} with gamma matrices on the left one deduces that
\begin{equation}
\Gamma^{r_1\cdots r_n}\Big|_{\text{Weyl}} = \frac{1}{\sqrt{-g}} \frac{(-1)^{\frac{1}{2}n(n+1)+1}}{(d-n)!}
\Gamma_{s_1\cdots s_{d-n}}\Big|_{\text{Weyl}} \epsilon^{s_1\cdots s_{d-n} r_1\cdots r_n}\, .
\end{equation}
Here is an example:
\begin{screen}{1,2}
{m,n,p,q,r,s,t}::Indices.
{m,n,p,q,r,s,t}::Integer(0..5).
\Gamma{#}::GammaMatrix.
\Gamma_{m n p q};
@projweyl!(%);
\end{screen}

\cdbseeprop{GammaMatrix}
\cdbseealgo{join}