1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
|
#include "properties/SortOrder.hh"
#include "algorithms/sort_sum.hh"
using namespace cadabra;
sort_sum::sort_sum(const Kernel& k, Ex& e)
: Algorithm(k, e)
{
}
bool sort_sum::can_apply(iterator st)
{
if(*st->name=="\\sum") return true;
else return false;
}
Algorithm::result_t sort_sum::apply(iterator& st)
{
// This bubble sort is of course a disaster, but it'll have to do for now.
result_t ret=result_t::l_no_action;
sibling_iterator one, two;
unsigned int num=tr.number_of_children(st);
for(unsigned int i=1; i<num; ++i) {
one=tr.begin(st);
two=one;
++two;
for(unsigned int j=i+1; j<=num; ++j) { // this loops too many times, no?
int es=subtree_compare(&kernel.properties, one, two, -2, true, 0, true);
if(should_swap(one, es)) {
tr.swap(one);
std::swap(one,two); // put the iterators back in order
ret=result_t::l_applied;
}
++one;
++two;
}
}
return ret;
}
bool sort_sum::should_swap(iterator obj, int subtree_comparison) const
{
sibling_iterator one=obj, two=obj;
++two;
// Find a SortOrder property which contains both one and two.
int num1, num2;
const SortOrder *so1=kernel.properties.get<SortOrder>(one,num1);
const SortOrder *so2=kernel.properties.get<SortOrder>(two,num2);
if(so1==0 || so2==0) { // No sort order known
if(subtree_comparison<0) return true;
return false;
}
else if(abs(subtree_comparison)<=1) { // Identical up to index names
if(subtree_comparison==-1) return true;
return false;
}
else {
if(so1==so2) {
if(num1>num2) return true;
return false;
}
}
return false;
}
|