1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
#include <sstream>
#include "Cleanup.hh"
#include "Functional.hh"
#include "algorithms/substitute.hh"
#include "properties/Indices.hh"
#define DBG_MACRO_NO_WARNING
#define DBG_MACRO_DISABLE
#include "dbg.h"
// #define DEBUG 1
using namespace cadabra;
substitute::substitute(const Kernel& k, Ex& tr, Ex& args_, bool partial)
: Algorithm(k, tr), comparator(k.properties), args(args_), sort_product_(k, tr), partial(partial)
{
cadabra::do_list(args, args.begin(), [&](Ex::iterator arrow) {
//args.print_recursive_treeform(std::cerr, arrow);
if(*arrow->name!="\\arrow" && *arrow->name!="\\equals")
throw ArgumentException("substitute: Argument is neither a replacement rule nor an equality");
sibling_iterator lhs=args.begin(arrow);
sibling_iterator rhs=lhs;
rhs.skip_children();
++rhs;
if(*lhs->name=="") { // replacing a sub or superscript
lhs=tr.flatten_and_erase(lhs);
}
if(*rhs->name=="") { // replacing with a sub or superscript
rhs=tr.flatten_and_erase(rhs);
}
try {
if(*lhs->multiplier!=1) {
throw ArgumentException("substitute: No numerical pre-factors allowed on lhs of replacement rule.");
}
// test validity of lhs and rhs
iterator lhsit=lhs, stopit=lhs;
stopit.skip_children();
++stopit;
while(lhsit!=stopit) {
if(lhsit->is_object_wildcard()) {
if(tr.number_of_children(lhsit)>0) {
throw ArgumentException("substitute: Object wildcards cannot have child nodes.");
}
}
++lhsit;
}
lhsit=rhs;
stopit=rhs;
stopit.skip_children();
++stopit;
while(lhsit!=stopit) {
if(lhsit->is_object_wildcard()) {
if(tr.number_of_children(lhsit)>0) {
throw ArgumentException("substitute: Object wildcards cannot have child nodes.");
}
}
++lhsit;
}
// check whether there are dummies.
index_map_t ind_free, ind_dummy;
classify_indices(lhs, ind_free, ind_dummy);
lhs_contains_dummies[arrow]= ind_dummy.size()>0;
ind_free.clear();
ind_dummy.clear();
if(rhs!=tr.end()) {
classify_indices(rhs, ind_free, ind_dummy);
rhs_contains_dummies[arrow]=ind_dummy.size()>0;
}
}
catch(std::exception& er) {
throw ArgumentException(std::string("substitute: Index error in replacement rule. ")+er.what());
}
return true;
});
}
bool substitute::can_apply(iterator st)
{
// std::cerr << "attempting to match at " << st << std::endl;
Ex::iterator found = cadabra::find_in_list(args, args.begin(), [&](Ex::iterator arrow) {
comparator.clear();
iterator lhs=tr.begin(arrow);
if(*lhs->name=="\\conditional") {
lhs=tr.begin(lhs);
conditions=lhs;
conditions.skip_children();
++conditions;
}
else conditions=tr.end();
if(lhs->name!=st->name && !lhs->is_object_wildcard() && !lhs->is_name_wildcard() && lhs->name->size()>0)
return args.end();
Ex_comparator::match_t ret;
comparator.lhs_contains_dummies=lhs_contains_dummies[arrow];
// std::cerr << "lhs_contains_dummies " << comparator.lhs_contains_dummies << std::endl;
// HERE: we need to have one entry point for matching, which dispatches depending
// on whether we have a normal node, a product, a sum or a sibling range with
// sibling wildcards. We also need a simple notation (and an exception at top
// level for plus and prod).
//
// > ex:=A+B+C+D;
// A + B + C + D
// > substitute(_, $B+C -> Q$)
if(*lhs->name=="\\prod") ret=comparator.match_subproduct(tr, lhs, tr.begin(lhs), st, conditions);
else if(*lhs->name=="\\sum") ret=comparator.match_subsum(tr, lhs, tr.begin(lhs), st, conditions);
else ret=comparator.match_subtree(tr, lhs, st, conditions);
if(ret == Ex_comparator::match_t::subtree_match ||
ret == Ex_comparator::match_t::match_index_less ||
ret == Ex_comparator::match_t::match_index_greater) {
use_rule=arrow;
// If we are not matching a partial sum or partial product, need to check that all
// terms or factors are accounted for.
if(!partial) {
dbg(comparator.factor_locations.size());
dbg(tr.number_of_children(st));
if(comparator.factor_locations.size()!=tr.number_of_children(st))
return args.end();
}
return arrow;
}
return args.end();
});
// if(found!=args.end())
// std::cerr << "rule working: " << Ex(found) << std::endl;
// else
// std::cerr << "rule not working, going to return " << (found!=args.end()) << std::endl;
return found!=args.end();
}
Algorithm::result_t substitute::apply(iterator& st)
{
#ifdef DEBUG
std::cerr << "substitute::apply at " << Ex(st) << std::endl;
#endif
// dbg(comparator.replacement_map);
// for(auto& rule: comparator.replacement_map)
// std::cerr << "* " << rule.first << " -> " << rule.second << std::endl;
sibling_iterator arrow=use_rule;
iterator lhs=tr.begin(arrow);
iterator rhs=lhs;
rhs.skip_children();
++rhs;
if(*lhs->name=="\\conditional")
lhs=tr.begin(lhs);
// We construct a new tree 'repl' which is a copy of the rhs of the
// replacement rule, and then replace nodes and subtrees in there
// based on how the pattern matching went.
Ex repl(rhs);
index_map_t ind_free, ind_dummy, ind_forced;
if(rhs_contains_dummies[use_rule]) {
classify_indices(repl.begin(), ind_free, ind_dummy);
//std::cerr << "rhs contains dummies " << ind_dummy.size() << std::endl;
}
else {
//std::cerr << "rhs does not contain dummies" << std::endl;
}
// Replace all patterns on the rhs of the rule with the objects they matched.
// Keep track of all indices which _have_ to stay what they are, in ind_forced.
// Keep track of insertion points of subtrees.
iterator it=repl.begin();
Ex_comparator::replacement_map_t::iterator loc;
Ex_comparator::subtree_replacement_map_t::iterator sloc;
std::vector<iterator> subtree_insertion_points;
while(it!=repl.end()) {
bool is_stripped=false;
// For some reason 'a?' is not found!?! Well, that's presumably because _{a?} does not
// match ^{a?}. (though this does match when we write 'i' instead of a?.
loc=comparator.replacement_map.find(Ex(it));
if(loc==comparator.replacement_map.end() && it->is_name_wildcard() && tr.number_of_children(it)!=0) {
Ex tmp(it);
tmp.erase_children(tmp.begin());
loc=comparator.replacement_map.find(tmp);
is_stripped=true;
}
//std::cerr << "consider element of repl " << Ex(it) << std::endl;
if(loc!=comparator.replacement_map.end()) { // name wildcards
#ifdef DEBUG
std::cerr << "wildcard replaced: " << loc->first << " -> " << loc->second << std::endl;
#endif
// When a replacement is made here, and the index is actually
// a dummy in the replacement, we screw up the ind_dummy
// map. Then, at the next step, when conflicting dummies are
// relabelled, things go wrong. Solution: in this case, the
// index under consideration should be taken out of ind_dummy.
// This is easy, because we can just throw out all indices
// with the original name.
ind_dummy.erase(Ex(it));
str_node::bracket_t remember_br=it->fl.bracket;
if(is_stripped || (it->is_name_wildcard() && !it->is_index()) ) {
// a?_{i j k} type patterns should only replace the head
// TODO: should we replace brackets here too?
it->name=(*loc).second.begin()->name;
multiply(it->multiplier, *(*loc).second.begin()->multiplier);
it->fl=(*loc).second.begin()->fl;
// std::cerr << "replaced: \n" << it << std::endl;
}
else {
// Careful with the multiplier: the object has been matched to the pattern
// without taking into account the top-level multiplier. So keep the multiplier
// of the thing we are replacing.
multiplier_t mt=*it->multiplier;
it=tr.replace_index(it, (*loc).second.begin()); //, true);
multiply(it->multiplier, mt);
}
it->fl.bracket=remember_br;
if(rhs_contains_dummies[use_rule])
ind_forced.insert(index_map_t::value_type(Ex(it), it));
++it;
}
else if( (sloc=comparator.subtree_replacement_map.find(it->name))
!=comparator.subtree_replacement_map.end()) { // object wildcards
//std::cerr << "srule : " << Ex(it) << std::endl;
multiplier_t tmpmult=*it->multiplier; // remember target multiplier
iterator tmp= tr.insert_subtree(it, (*sloc).second);
#ifdef DEBUG
std::cerr << "subtree replaced: " << repl << std::endl;
#endif
tmp->fl.bracket=it->fl.bracket;
tmp->fl.parent_rel=it->fl.parent_rel; // ok?
it=tr.erase(it);
multiply(tmp->multiplier, tmpmult);
#ifdef DEBUG
std::cerr << "subtree replaced 2: " << repl << std::endl;
#endif
subtree_insertion_points.push_back(tmp);
index_map_t ind_subtree_free, ind_subtree_dummy;
// FIXME: as in the name wildcard case above, we only need these
// next three lines if there are wildcards in the rhs.
classify_indices(tmp, ind_subtree_free, ind_subtree_dummy);
ind_forced.insert(ind_subtree_free.begin(), ind_subtree_free.end());
ind_forced.insert(ind_subtree_dummy.begin(), ind_subtree_dummy.end());
}
else ++it;
}
// If the replacement contains dummies, avoid clashes introduced when
// free indices in the replacement (induced from the original expression)
// take values already used for the dummies.
//
// Note: the dummies which clash with other factors in a product are
// not replaced here, but rather in the next step.
// std::cerr << ind_dummy.size() << std::endl;
if(ind_dummy.size()>0) {
#ifdef DEBUG
std::cerr << "avoid dummy clashes" << std::endl;
#endif
index_map_t must_be_empty;
determine_intersection(ind_forced, ind_dummy, must_be_empty);
index_map_t::iterator indit=must_be_empty.begin();
index_map_t added_dummies;
// std::cerr << must_be_empty.size() << " dummies have to be relabelled" << std::endl;
while(indit!=must_be_empty.end()) {
Ex the_key=indit->first;
const Indices *dums=kernel.properties.get<Indices>(indit->second, true);
if(dums==0) {
std::ostringstream str;
str << "Need to know an index set for " << Ex(*indit->second) << ".";
throw ConsistencyException(str.str());
}
Ex relabel=get_dummy(dums, &ind_dummy, &ind_forced, &added_dummies);
added_dummies.insert(index_map_t::value_type(relabel,(*indit).second));
do {
// std::cerr << "replace index " << *(indit->second->name) << " with " << *(relabel.begin()->name) << std::endl;
tr.replace_index(indit->second,relabel.begin(), true);
++indit;
// txtout << *(indit->first.begin()->name) << " vs " << *(the_key.begin()->name) << std::endl;
}
while(indit!=must_be_empty.end() && tree_exact_equal(&kernel.properties, indit->first,the_key,-1));
}
}
// After all replacements have been done, we need to cleanup the
// replacement tree.
#ifdef DEBUG
std::cerr << repl << std::endl;
#endif
cleanup_dispatch_deep(kernel, repl);
#ifdef DEBUG
std::cerr << "after cleanup:\n" << repl << std::endl;
#endif
repl.begin()->fl.bracket=st->fl.bracket;
bool rename_replacement_dummies_called=false;
// Now we do the actual replacement, putting the "repl" in the tree.
// If the to-be-replaced object sits in a product, we have to relabel all
// dummy indices in the replacement which clash with indices in other factors
// in the product.
if(*lhs->name=="\\prod") {
for(unsigned int i=1; i<comparator.factor_locations.size(); ++i)
tr.erase(comparator.factor_locations[i]);
// no need to keep repl
iterator newtr=tr.move_ontop(iterator(comparator.factor_locations[0]),repl.begin());
multiply(st->multiplier, *newtr->multiplier);
one(newtr->multiplier);
if(ind_dummy.size()>0) {
rename_replacement_dummies(newtr); // do NOW, otherwise the replacement cannot be isolated anymore
rename_replacement_dummies_called=true;
}
if(*rhs->name=="\\prod" && *newtr->name=="\\prod") {
tr.flatten(newtr);
tr.erase(newtr);
}
if(tr.number_of_children(st)==1) {
multiply(tr.begin(st)->multiplier, *st->multiplier);
tr.flatten(st);
st=tr.erase(st);
}
}
else if(*lhs->name=="\\sum") {
for(unsigned int i=1; i<comparator.factor_locations.size(); ++i)
tr.erase(comparator.factor_locations[i]);
multiply(repl.begin()->multiplier, 1/comparator.term_ratio);
// no need to keep repl
iterator newtr=tr.move_ontop(iterator(comparator.factor_locations[0]),repl.begin());
// multiply(st->multiplier, *newtr->multiplier);
// one(newtr->multiplier);
if(ind_dummy.size()>0) {
rename_replacement_dummies(newtr); // do NOW, otherwise the replacement cannot be isolated anymore
rename_replacement_dummies_called=true;
}
}
else {
#ifdef DEBUG
std::cerr << "move " << repl << " on top of " << st << std::endl;
#endif
multiply(repl.begin()->multiplier, *st->multiplier);
auto keep_parent_rel=st->fl.parent_rel;
st=tr.move_ontop(st, repl.begin()); // no need to keep the original repl tree
st->fl.parent_rel=keep_parent_rel;
}
if(ind_dummy.size()>0 && !rename_replacement_dummies_called)
rename_replacement_dummies(st);
// The replacement is done now. What is left is to take into
// account any signs caused by moving factors through each other
int totsign=1;
for(unsigned int i=0; i<comparator.factor_moving_signs.size(); ++i) {
totsign*=comparator.factor_moving_signs[i];
dbg(i);
dbg(comparator.factor_moving_signs[i]);
}
multiply(st->multiplier, totsign);
// // Get rid of numerical '1' factors inside products (this will not clean up
// // '1's from a 'q -> 1' type replacement, since in this case 'st' points to the 'q'
// // node and we are not allowed to touch the tree above the entry point; these
// // things are taken care of by the algorithm class itself).
// // FIXME: still needed?
// cleanup_dispatch(kernel, tr, st);
#ifdef DEBUG
std::cerr << tr << std::endl;
#endif
dbg(tr.begin());
dbg(subtree_insertion_points.size());
// Cleanup nests on all insertion points and on the top node.
// for(unsigned int i=0; i<subtree_insertion_points.size(); ++i) {
// iterator ip=subtree_insertion_points[i];
// //std::cerr << *ip->name << std::endl;
// cleanup_dispatch(kernel, tr, ip);
// }
//
cleanup_dispatch(kernel, tr, st);
dbg("complete");
return result_t::l_applied;
}
|