1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
#include "algorithms/sym.hh"
using namespace cadabra;
// #define DEBUG 1
sym::sym(const Kernel& k, Ex& tr, const std::vector<unsigned int>& slots, bool s)
: Algorithm(k, tr), sign(s), slotloc(slots)
{
#ifdef DEBUG
std::cerr << "sym::sym: initialised with slot positions." << std::endl;
#endif
}
sym::sym(const Kernel& k, Ex& tr, Ex& objs, bool s)
: Algorithm(k, tr), objects(objs), sign(s)
{
if(objects.size()==0)
throw ArgumentException("sym/asym: need a list of objects over which to (anti)symmetrise.");
}
bool sym::can_apply(iterator it)
{
if(*it->name!="\\prod")
if(!is_single_term(it))
return false;
prod_wrap_single_term(it);
bool located=false;
if(objects.size()>0) {
#ifdef DEBUG
std::cerr << "sym::can_apply: finding objects" << std::endl;
#endif
argloc_2_treeloc.clear();
located=locate_object_set(objects, tr.begin(it), tr.end(it), argloc_2_treeloc);
}
else {
#ifdef DEBUG
std::cerr << "sym::can_apply: collecting objects" << std::endl;
#endif
objects.set_head(str_node("\\comma"));
argloc_2_treeloc.clear();
argloc_2_treeloc.resize(slotloc.size(), 0);
for(size_t i=0; i<slotloc.size(); ++i) {
auto ind=begin_index(it);
ind+=slotloc[i];
if(tr.is_valid(ind)==false) {
throw ArgumentException("Expression does not have at least "+std::to_string(slotloc[i]+1)+" indices.");
}
#ifdef DEBUG
std::cerr << "sym::can_apply: adding " << ind << std::endl;
#endif
objects.append_child(objects.begin(), Ex::iterator(ind));
// Convert the index-index to iterator-index (the former says how many times
// an IndexIterator should be incremented, the latter says how many times a
// generic Iterator should be incremented).
iterator steps=tr.begin(it);
while(steps!=iterator(ind)) {
++steps;
++argloc_2_treeloc[i];
}
}
located=true;
}
prod_unwrap_single_term(it);
#ifdef DEBUG
std::cerr << "sym::can_apply: ready to go: " << located << std::endl;
#endif
return located;
}
Algorithm::result_t sym::apply(iterator& it)
{
#ifdef DEBUG
std::cerr << "sym::apply: running" << std::endl;
#endif
prod_wrap_single_term(it);
result_t res=doit(it,sign);
// if(res==result_t::l_applied)
// it=tr.parent(st);
//IS DOIT not doing that right?
return res;
}
Algorithm::result_t sym::doit(iterator& it, bool sign)
{
assert(*it->name=="\\prod");
#ifdef DEBUG
std::cerr << "sym::doit: " << objects << std::endl;
#endif
// Setup combinations class. First construct original and block length.
sibling_iterator fst=objects.begin(objects.begin());
sibling_iterator fnd=objects.end(objects.begin());
raw_ints.clear();
raw_ints.block_length=0;
for(unsigned int i=0; i<argloc_2_treeloc.size(); ++i)
raw_ints.original.push_back(i);
while(fst!=fnd) {
#ifdef DEBUG
std::cerr << "sym::doit: object " << *fst->name << std::endl;
#endif
if(*(fst->name)=="\\comma") {
if(raw_ints.block_length==0) raw_ints.block_length=tr.number_of_children(fst);
else assert(raw_ints.block_length==tr.number_of_children(fst));
}
else if(fst->name->size()>0 || (fst->name->size()==0 && tr.number_of_children(fst)==1)) {
if(raw_ints.block_length==0) raw_ints.block_length=1;
else assert(raw_ints.block_length==1);
}
++fst;
}
long start_=-1, end_=-1;
// FIXME: what was this v1 feature supposed to do?
//
// sibling_iterator other_args=args_begin();
// ++other_args;
// while(other_args!=args_end()) {
// if(*(other_args->name)=="\\setoption") {
// if(*tr.child(other_args,0)->name=="Start")
// start_=to_long(*tr.child(other_args,1)->multiplier);
// else if(*tr.child(other_args,0)->name=="End")
// end_=to_long(*tr.child(other_args,1)->multiplier);
// }
// ++other_args;
// }
raw_ints.set_unit_sublengths();
// Sort within the blocks, if any
if(raw_ints.block_length!=1) {
std::vector<unsigned int>::iterator fr=argloc_2_treeloc.begin();
std::vector<unsigned int>::iterator to=argloc_2_treeloc.begin();
to+=raw_ints.block_length;
for(unsigned int i=0; i<raw_ints.original.size()/raw_ints.block_length; ++i) {
std::sort(fr, to);
fr+=raw_ints.block_length;
to+=raw_ints.block_length;
}
}
// txtout << raw_ints.original.size() << " original size" << std::endl;
// txtout << raw_ints.block_length << " block length" << std::endl;
// Add output asym ranges.
// FIXME: v2: this is probably not very useful for the average user.
// if(number_of_args()>1) {
// sibling_iterator ai=args_begin();
// ++ai;
// while(ai!=args_end()) {
// if(*ai->name=="\\comma") {
// sibling_iterator cst=tr.begin(ai);
// combin::range_t asymrange;
// while(cst!=tr.end(ai)) {
// asymrange.push_back(to_long(*cst->multiplier));
// ++cst;
// }
// raw_ints.input_asym.push_back(asymrange);
// }
// ++ai;
// }
// }
raw_ints.permute(start_, end_);
#ifdef DEBUG
std::cerr << "Computed all permutations: " << raw_ints.size() << std::endl;
#endif
// Build replacement tree.
Ex rep;
sibling_iterator top=rep.set_head(str_node("\\sum"));
sibling_iterator dummy=rep.append_child(top, str_node("dummy"));
for(unsigned int i=0; i<raw_ints.size(); ++i) {
Ex copytree(it);// CORRECT?
copytree.begin()->fl.bracket=str_node::b_none;
copytree.begin()->fl.parent_rel=str_node::p_none;
std::map<iterator, iterator, Ex::iterator_base_less> replacement_map;
for(unsigned int j=0; j<raw_ints[i].size(); ++j) {
iterator repl=copytree.begin(), orig=it; // CORRECT?
++repl;
++orig;
for(unsigned int k=0; k<argloc_2_treeloc[raw_ints[i][j]]; ++k)
++orig;
for(unsigned int k=0; k<argloc_2_treeloc[raw_ints.original[j]]; ++k)
++repl;
// We cannot just replace here, because then walking along the tree
// in the next step may no longer work (we may be swapping objects
// with different numbers of indices, as in
//
// A_{a b} B_{c};
// @sym!(%){A_{a b}, B_{c}};
//
// so we store iterators first.
if((*orig->name).size()==0)
replacement_map[repl]=tr.begin(orig);
else
replacement_map[repl]=orig;
}
// All replacement rules now figured out, let's do them.
std::map<iterator, iterator>::iterator rit=replacement_map.begin();
while(rit!=replacement_map.end()) {
str_node::bracket_t cbr=rit->first->fl.bracket;
iterator repl=copytree.replace(rit->first, rit->second);
// FIXME: think about whether this is what we want: the bracket
// type 'stays', while the parent rel is moved together with the
// index. A(x)*Z[y] -> A(y)*Z[x] ,
// A^m_n -> A_n^m .
repl->fl.bracket=cbr;
++rit;
}
// Some final multiplier stuff and cleanup
multiply(copytree.begin()->multiplier, 1/multiplier_t(raw_ints.total_permutations()));
// multiply(copytree.begin()->multiplier, *st->multiplier);
if(sign)
multiply(copytree.begin()->multiplier, raw_ints.ordersign(i));
iterator tmp=copytree.begin();
prod_unwrap_single_term(tmp);
rep.insert_subtree(dummy, copytree.begin());
#ifdef DEBUG
if(i%1000==0)
std::cerr << i << std::endl;
#endif
}
rep.erase(dummy);
// show replacement tree
// txtout << "replacement : " << std::endl;
// eo.print_infix(rep.begin());
// txtout << std::endl;
it=tr.replace(it, rep.begin());
// if(*(tr.parent(reploc)->name)=="\\sum") {
// tr.flatten(reploc);
// reploc=tr.erase(reploc);
// }
return result_t::l_applied;
}
|