File: vary.cc

package info (click to toggle)
cadabra2 2.4.3.2-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 78,732 kB
  • sloc: ansic: 133,450; cpp: 92,064; python: 1,530; javascript: 203; sh: 184; xml: 182; objc: 53; makefile: 51
file content (252 lines) | stat: -rw-r--r-- 6,307 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

#include "Cleanup.hh"
#include "Exceptions.hh"
#include "algorithms/vary.hh"
#include "algorithms/substitute.hh"
#include "algorithms/product_rule.hh"
#include "properties/Derivative.hh"
#include "properties/Accent.hh"

using namespace cadabra;

// #define DEBUG 1

vary::vary(const Kernel& k, Ex& tr, Ex& args_)
	: Algorithm(k, tr), args(args_)
	{
	}

bool vary::can_apply(iterator it)
	{
	if(it->is_zero()) return false;
	
	if(*it->name=="\\prod") return true;
	if(*it->name=="\\commutator") return true;
	if(*it->name=="\\anticommutator") return true;
	if(*it->name=="\\sum") return true;
	if(*it->name=="\\pow") return true;
	if(*it->name=="\\int") return true;
	if(*it->name=="\\equals") return false;
	if(is_single_term(it)) return true;
	if(is_nonprod_factor_in_prod(it)) return true;
	const Derivative *der = kernel.properties.get<Derivative>(it);
	if(der) return true;
	const Accent *acc = kernel.properties.get<Accent>(it);
	if(acc) return true;

	if(!tr.is_head(it)) {
		der = kernel.properties.get<Derivative>(tr.parent(it));
		if(der) return true;
		acc = kernel.properties.get<Accent>(tr.parent(it));
		if(acc) return true;
		}
	return false;
	}

/*

D(A) C + D(A);
@vary(%)(


*/

Algorithm::result_t vary::apply(iterator& it)
	{
	result_t res=result_t::l_no_action;

	if(*it->name=="\\prod" || *it->name=="\\commutator" || *it->name=="\\anticommutator") {
		Ex result;
		result.set_head(str_node("\\sum"));
		iterator newsum=result.begin();

		// Iterate over all factors, attempting a substitute. If this
		// succeeds, copy the term to the "result" tree. Then restore the
		// original. We have to do the substitute on the original tree so
		// that index relabelling takes into account the rest of the tree.

		Ex prodcopy(it); // keep a copy to restore after each substitute

		vary varyfac(kernel, tr, args);
		int pos=0;
		for(;;) {
			sibling_iterator fcit=tr.begin(it);
			fcit+=pos;
			if(fcit==tr.end(it)) break;

			iterator fcit2(fcit);
			if(varyfac.can_apply(fcit2)) {
				result_t res = varyfac.apply(fcit2);
				if(fcit2->is_zero()==false && res==result_t::l_applied) {
					auto toclean = result.append_child(newsum, it);
					// the varied factor itself cannot get rid of nested
					// products, that's for us to do at the top level prod.
					cleanup_dispatch(kernel, tr, toclean);
					// std::cerr << toclean << std::endl;
					}

				// restore original
				it=tr.replace(it, prodcopy.begin());
				}
			++pos;
			}
		if(tr.number_of_children(newsum)>0) {
			it=tr.move_ontop(it, newsum);
			}
		else {   // varying any of the factors produces nothing, variation is zero
			zero(it->multiplier);
			}
//		std::cerr << it << std::endl;
		cleanup_dispatch(kernel, tr, it);
//		std::cerr << it << std::endl;		
		res=result_t::l_applied;
		return res;
		}

	const Derivative *der = kernel.properties.get<Derivative>(it);
	const Accent     *acc = kernel.properties.get<Accent>(it);
	if(der || acc) {
		vary vry(kernel, tr, args);

		sibling_iterator sib=tr.begin(it);
		bool has_applied=false;
		while(sib!=tr.end(it)) {
			iterator app=sib;
			++sib;
			if(app->is_index()) continue;
			if(vry.can_apply(app)) {
				if(vry.apply(app)==result_t::l_applied) {
					has_applied=true;
					res=result_t::l_applied;
					}
				}
			}

		// If no variation took place, set to zero if we are termlike.
		if(!has_applied && is_termlike(it)) {
			zero(it->multiplier);
			return result_t::l_applied;
			}

		return res;
		}

	if(*it->name=="\\sum") { // call vary on every term
		vary vry(kernel, tr, args);

		sibling_iterator sib=tr.begin(it);
		while(sib!=tr.end(it)) {
			iterator app=sib;
			++sib;
			if(vry.can_apply(app)) {
				res = vry.apply(app);
				}
			else {
				// remove this term
				res=result_t::l_applied;
				node_zero(app);
				}
			}

		cleanup_dispatch(kernel, tr, it);
		return res;
		}

	if(*it->name=="\\int") { // call vary on first argument
		vary vry(kernel, tr, args);

		iterator sib=tr.begin(it);
		if(vry.can_apply(sib))
			res=vry.apply(sib);
		return res;
		}

	if(*it->name=="\\pow") {
		Ex backup(it);
		// Wrap the power in a \cdbDerivative and then call @prodrule.
		it=tr.wrap(it, str_node("\\cdbDerivative"));
		product_rule pr(kernel, tr);
		pr.can_apply(it);
		pr.apply(it);
		// Find the '\cdbDerivative node again'.
		sibling_iterator sib=tr.begin(it);
		res=result_t::l_no_action;
		while(sib!=tr.end(it)) {
			if(*sib->name=="\\cdbDerivative") {
				tr.flatten(sib);
				sib=tr.erase(sib);
				vary vry(kernel, tr, args);
				iterator app=sib;
				if(vry.can_apply(app)) {
					res=vry.apply(app);
					}
				break;
				}
			++sib;
			}
		if(res!=result_t::l_applied) {
			// restore original
			it=tr.replace(it, backup.begin());
			}
		return res;
		}

	if(tr.is_head(it)==false) {
		der = kernel.properties.get<Derivative>(tr.parent(it));
		acc = kernel.properties.get<Accent>(tr.parent(it));

		if(der || acc || is_single_term(it)) { // easy: just vary this term by substitution
			// std::cerr << "single term " << *it->name << std::endl;
			substitute subs(kernel, tr, args);
			if(subs.can_apply(it)) {
				if(subs.apply(it)==result_t::l_applied) {
					return result_t::l_applied;
					}
				}

			if(is_termlike(it)) {
				zero(it->multiplier);
				return result_t::l_applied;
				}
			return result_t::l_no_action;
			}
		}

	if(is_nonprod_factor_in_prod(it)) {
		substitute subs(kernel, tr, args);
		if(subs.can_apply(it)) {
			if(subs.apply(it)==result_t::l_applied) {
				return result_t::l_applied;
				}
			}

		if(is_termlike(it)) {
			zero(it->multiplier);
			return result_t::l_applied;
			}
		return result_t::l_no_action;
		}

	// If we get here, we are talking about a single term, e.g.
	// ex:= x_{m};

	if(is_single_term(it)) {
		substitute subs(kernel, tr, args);
		if(subs.can_apply(it)) {
			if(subs.apply(it)==result_t::l_applied) {
				return result_t::l_applied;
				}
			}
		}

	// If we get here we have a single term for which we do not know
	// (yet) how to take a variational derivative. For instance some
	// unknown function f(a) varied wrt. a. This should spit out
	// \delta{f(a)}{\delta{a}}\delta{a} or something like that.

	throw RuntimeException("Do not yet know how to vary that expression.");
	//	std::cerr << "No idea how to vary single term " << Ex(it) << std::endl;

	return res;
	}