1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
#
# Test 1:= keep_terms
from cadabra import *;
obj = Ex('a*(b+c)')
distribute(obj,True)
How do we do this on the C++ side?
-----
With a preprocessor we could turn
obj := A_{m n} B_{n p};
into
obj = Ex('A_{m n} B_{n p}');
very easily and then all problems would go away. Ditto for
distribute!(obj);
to
distribute(obj, all=True);
algo options:
all: like ! synonym for deep
deep: like ! make deep=True the default
actually, we could make this algo dependent; for some algorithms
like vary it does not make sense to do a deep default.
repeat: like !! make repeat=False the default
We could also wrap
distribute(%);
since (% is not a valid python sequence of characters anyway.
Properties:
A_{m n}::Distributable(name='vector');
to
Distributable('A_{m n}', name='vector');
sed -e 's/\(((\?!:=).)*\):=\(.*\)/\1 = Ex("\2")/'
---------------------
Indices('m,n,p,q,r', name='vector');
ex = 'A_{m n} B_{m n}';
substitute(ex, 'B_{p q} -> C_{p} C_{q}');
obj1 = Ex('a1 + a2 + a3 + a4 + a5 + a6 + a7');
obj1 = Algo(obj1, True);
obj1 = keep_terms(obj1, {2,4}); // auto-converts string to ex
// it is pass by reference, so obj1 gets modified. None of
// this silly obj1 = blabla(obj1) nonsense.
tst1 = 'a3 + a4 + a5 - obj1'; // python objects are known on the cdb side.
collect_terms(tst1);
assert(tst1);
ex = keep_terms('a1 + a2 + a3 + a4 + a5 + a6 + a7', {2,4});
@keep_terms(%){2}{4};
tst1:= a3 + a4 + a5 - @(obj1);
@collect_terms!(%);
@assert(tst1);
-----
a:=A*(B+C);
distribute(a, repeat=True);
b:=A_{m n} (B^{n p} + C^{n p});
distribute(b);
distribute('A_{m n} (B^{n p} + C^{n p})');
{a,b,c,d}::Indices;
ex:=A_{c d} C^{d};
rename_dummies(ex);
sort_product(ex)
ex:=B
ex:=A B A D C;
rl:= B -> Q;
substitute(ex, rl, True)
{m,n,p,a,b}::Indices.
ex:=A_{m n} ( C^{n p} + D^{n p} );
rl:= C^{a b} -> M_{m} D^{m a b};
substitute(ex, rl)
from cadabra import *
Indices(Ex('{m,n,p,a,b}'))
ex=Ex('A_{m n} ( C^{n p} + D^{n p} )')
rule=Ex('C^{a b} -> M_{m} D^{m a b}')
substitute(ex, rule, True)
substitute(ex, rl, True)
ex:= B + A B A D C + A A D C;
rl:= B -> 2;
substitute(ex, rl)
rl2:= A A D C -> 9
substitute(ex, rl2)
ex:= B + A B A D C + A A D C;
substitute(ex, rl)
rl:= B -> 2;
substitute(ex, rl2)
{m,n,p,a,b}::Indices.
ex:=A_{m n} ( C^{n p} + D^{n p} );
rl:= C^{a b} -> D^{a b};
substitute(ex, rl)
ex1=Ex(0)
ex2=Ex('0')
ex3=Ex('1')
print ex1==ex2
print ex2==ex3
print ex1==Ex(0)
def test():
{m,n,p,a,b}::AntiCommuting.
ex:=p m n a;
sort_product(ex);
print(ex);
ex2:= A*(B+C);
distribute(ex2);
tst2:= A B + A C - @(ex2)
print(tst2)
collect_terms(tst2)
if tst==Ex(0):
print(tree(tst2))
print(tree(Ex(0))
test()
# This does not see the property declared in test():
ex3:=p m n a;
sort_product(ex3);
print(ex3);
a=3
ex:= A_{m n} @(a)
|